[1] Oracle. Oracle autonomous database[EB/OL].[2020-09-20]. https://www.oracle.com/database/autonomous-database/feature. html. [2] KOSSMANN J. Self-driving:from general purpose to specialized DBMSs[EB/OL].[2020-09-20]. http://ceur-ws.org/Vol-2175/paper15.pdf. [3] BASU D,LIN Q,VO T H,et al. Regularized cost-model oblivious database tuning with reinforcement learning[M]//HAMEURLAIN A,KÜNG J,WAGNER R,et al. Transactions on Large-Scale Data- and Knowledge-Centered Systems XXVⅢ:Special Issue on Database- and Expert-Systems Applications,LNCS 9940. Berlin:Springer,2016:96-132. [4] VAN AKEN D,PAVLO A,GORDON J G,et al. Automatic database management system tuning through large-scale machine learning[C]//Proceedings of the 2017 ACM International Conference on Management of Data. New York:ACM,2017:1009-1024. [5] ZHANG J,LIU Y,ZHOU K,et al. An end-to-end automatic cloud database tuning system using deep reinforcement learning[C]//Proceedings of the 2019 International Conference on Management of Data. New York:ACM,2019:415-432. [6] HOLZE M, GAIDIES C, RITTER N. Consistent on-line classification of DBS workload events[C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York:ACM,2009:1641-1644. [7] CHAUDHURI S,GUPTA A K,NARASAYYA V. Compressing SQL workloads[C]//Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data. New York:ACM,2002:488-499. [8] HOLZE M,RITTER N. Towards workload shift detection and prediction for autonomic databases[C]//Proceedings of the ACM 1st Ph. D. Workshop in CIKM. New York:ACM,2007:109-116. [9] MA L,VAN AKEN D,HEFNY A,et al. Query-based workload forecasting for self-driving database management systems[C]//Proceedings of the 2018 International Conference on Management of Data. New York:ACM,2018:631-645. [10] SALZA S,TERRANOVA M. Workload modeling for relational database systems[C]//Proceedings of the 4th International Workshop on Database Machines. New York:Springer,1985:233-255. [11] MOZAFARI B,CURINO C,JINDAL A,et al. Performance and resource modeling in highly-concurrent OLTP workloads[C]//Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. New York:ACM,2013:301-312. [12] DAS S,LI F,NARASAYYA V R,et al. Automated demanddriven resource scaling in relational database-as-a-service[C]//Proceedings of the 2016 International Conference on Management of Data. New York:ACM,2016:1923-1934. [13] ROGERS J,PAPAEMMANOUIL O,CETINTEMEL U. A generic auto-provisioning framework for cloud databases[C]//Proceedings of the IEEE 26th International Conference on Data Engineering Workshops. Piscataway:IEEE,2010:63-68. [14] ELNAFFAR S S, MARTIN P. An intelligent framework for predicting shifts in the workloads of autonomic database management systems[C]//Proceedings of the 2004 IEEE International Conference on Advances in Intelligent Systems:Theory and Applications. Piscataway:IEEE,2004:15-18. [15] BALDAN F J,RAMÍREZ-GALLEGO S,BERGMEIR S,et al. A forecasting methodology for workload forecasting in cloud systems[J]. IEEE Transactions on Cloud Computing,2018,6(4):929-941. [16] NARAYANAN D,THERESKA E,AILAMAKI A. Continuous resource monitoring for self-predicting DBMS[C]//Proceedings of the 13th IEEE International Symposium on Modeling,Analysis, and Simulation of Computer and Telecommunication Systems. Piscataway:IEEE,2005:239-248. [17] Wikipedia. Dynamic time warping[EB/OL].[2020-09-20]. https://en.wikipedia.org/wiki/Dynamic_time_warping. [18] BERNDT D J,CLIFFORD J. Using dynamic time warping to find patterns in time series[C]//Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining. Palo Alto, CA:AAAI Press,1994:359-370. [19] 刘智. 面向多系统的数据库调优[D]. 深圳:中国科学院深圳先进技术研究院,2020:4-20. (LIU Z. Automatic database tuning for multi-system settings[D]. Shenzhen:Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences, 2020:4-20.) |