[1] 周艳庆. 软件系统容量管理探究[J]. 中国金融电脑,2013(11):60-63. (ZHOU Y Q. Exploration of software system capacity management[J]. Financial Computer of China,2013(11):60-63.) [2] 常润梅, 孟利青, 刘万军. 电信企业云计算数据中心容量管理[J]. 辽宁工程技术大学学报(自然科学版),2013,32(8):1112-1117.(CHANG R M,MENG L Q,LIU W J. Telecom enterprise cloud computing data center capacity management[J]. Journal of Liaoning Technical University(Natural Science),2013,32(8):1112-1117.) [3] FLIESS M,JOIN C,BEKCHEVA M,et al. Easily implementable time series forecasting techniques for resource provisioning in cloud computing[C]//Proceedings of the 6th International Conference on Control, Decision and Information Technologies. Piscataway:IEEE,2019:48-53, [4] FARAHNAKIAN F,LILJEBERG P,PLOSILA J. LiRCUP:linear regression based CPU usage prediction algorithm for live migration of virtual machines in data centers[C]//Proceedings of the 39th Euromicro Conference Series on Software Engineering and Advanced Applications. Piscataway:IEEE,2013:357-364. [5] BELOGLAZOV A,BUYYA R. OpenStack Neat:a framework for dynamic and energy-efficient consolidation of virtual machines in OpenStack clouds[J]. Concurrency and Computation:Practice and Experience,2015,27(5):1310-1333. [6] 闻静. 基于CPU利用率预测的虚拟机动态部署方法研究[D]. 沈阳:东北大学,2014:26-33.(WEN J. Research on the method of dynamic deployment of virtual machine based on prediction of CPU utilization[D]. Shenyang:Northeastern University,2014:26-33) [7] WANG J,YAN Y M,GUO J. Research on the prediction model of CPU utilization based on ARIMA-BP neural network[J]. MATEC Web of Conferences,2016,65:No. 03009. [8] 马小淋. 一种基于负载特征预测的容器云弹性伸缩策略[J]. 信息安全研究,2019,5(3):236-241.(MA X L. A container cloud elastic scaling strategy based on load characteristics prediction[J]. Journal of Information Security Research,2019,5(3):236-241.) [9] 吴俊伟, 姜春茂. 一种BP神经网络和遗传算法混合的云平台负载预测方法[J]. 软件,2017,38(8):18-24.(WU J W,JIANG C M. A load forecasting method of cloud platform based on BP neural network and genetic algorithm[J]. Computer Engineering & Software,2017,38(8):18-24.) [10] MASON K,DUGGAN M,BARRETT E,et al. Predicting host CPU utilization in the cloud using evolutionary neural networks[J]. Future Generation Computer Systems,2018,86:162-173. [11] RAO S N, SHOBHA G, PRABHU S, et al. Time series forecasting methods suitable for prediction of CPU usage[C]//Proceedings of the 4th International Conference on Computational Systems and Information Technology for Sustainable Solution. Piscataway:IEEE,2019:1-5. [12] TRAN N,NGUYEN T,NGUYEN B M,et al. A multivariate fuzzy time series resource forecast model for clouds using LSTM and data correlation analysis[J]. Procedia Computer Science, 2018,126:636-645. [13] 中国石油化工股份有限公司胜利油田分公司物探研究院. 一种基于双向循环神经网络的储层预测方法:中国, 201811632631. X[P]. 2019-05-24. (Geophysical Research Institute of Shengli Oilfield Branch of SINOPEC. A reservoir prediction method based on bidirectional cyclic neural network:China,201811632631. X[P]. 2019-05-24.) [14] GUPTA S,DINESH D A. Resource usage prediction of cloud workloads using deep bidirectional long short term memory networks[C]//Proceedings of the 2017 IEEE International Conference on Advanced Networks and Telecommunications Systems. Piscataway:IEEE,2017:1-6. [15] 杨海民, 潘志松, 白玮. 时间序列预测方法综述[J]. 计算机科学,2019,46(1):21-28.(YANG H M,PANG Z S,BAI W. Overview of time series forecasting methods[J]. Computer Science,2019,46(1):21-28.) [16] KUMAR J,GOOMER R,SINGH A K. Long Short Term Memory Recurrent Neural Network (LSTM-RNN) based workload forecasting model for cloud datacenters[J]. Procedia Computer Science,2018,125:676-682. [17] MOREL M,ACHARD C,KULPA R,et al. Time-series averaging using constrained dynamic time warping with tolerance[J]. Pattern Recognition,2018,74:77-89. [18] DUGGAN M,MASON K,DUGGAN J,et al. Predicting host CPU utilization in cloud computing using recurrent neural networks[C]//Proceedings of the 12th International Conference for Internet Technology and Secured Transactions. Piscataway:IEEE,2017:67-72. |