[1] 王春峰, 万海晖, 张维. 基于神经网络技术的商业银行信用风险评估[J]. 系统工程理论与实践,1999,19(9):24-32.(WANG C F,WAN H H,ZHANG W. Credit risk assessment in commercial banks using neural networks[J]. Systems Engineering-Theory and Practice,1999,19(9):24-32.) [2] ZHANG W Y,YANG D Q,ZHANG S,et al. A novel multi-stage ensemble model with enhanced outlier adaptation for credit scoring[J]. Expert Systems with Applications,2021,165:No. 113872. [3] STEENACKERS A,GOOVAERTS M J. A credit scoring model for personal loans[J]. Insurance:Mathematics and Economics,1989, 8(1):31-34. [4] BAESENS B,SETIONO R,MUES C,et al. Using neural network rule extraction and decision tables for credit risk evaluation[J]. Management Science,2003,49(3):312-329. [5] BREIMAN L. Random forests[J]. Machine Learning,2001,45(1):5-32. [6] FREUND Y,SCHAPIRE R E. Experiments with a new boosting algorithm[C]//Proceedings of the 13th International Conference on Machine Learning. San Francisco:Morgan Kaufmann Publishers Inc.,1996:148-156. [7] FRIEDMAN J H. Greedy function approximation:a gradient boosting machine[J]. The Annals of Statistics,2001,29(5):1189-1232. [8] CHEN T Q,GUESTRIN C. XGBoost:a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2016:785-794. [9] KE G L,MENG Q,FINLEY T,et al. LightGBM:a highly efficient gradient boosting decision tree[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:3146-3154. [10] ARORA N,KAUR P D. A Bolasso based consistent feature selection enabled random forest classification algorithm:an application to credit risk assessment[J]. Applied Soft Computing, 2020,86:No. 105936. [11] MOSCATO V,PICARIELLO A,SPERLÍ G. A benchmark of machine learning approaches for credit score prediction[J]. Expert Systems with Applications,2021,165:No. 113986. [12] ZHOU Z H,FENG J. Deep forest:towards an alternative to deep neural networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2017:3553-3559. [13] 陈卫中, 倪宗瓒, 潘晓平, 等. 用ROC曲线确定最佳临界点和可疑值范围[J]. 现代预防医学,2005,32(7):729-731.(CHEN W Z,NI Z Z,PAN X P,et al. Receiver Operating Characteristic curves to determine the optimal operating point and doubtable value interval[J]. Modern Preventive Medicine,2005,32(7):729-731.) [14] HAND D J. Measuring classifier performance:a coherent alternative to the area under the ROC curve[J]. Machine Learning,2009,77(1):103-123. [15] 赵琳娜, 刘琳, 刘莹, 等. 观测降水概率不确定性对集合预报概率Brier技巧评分结果的分析[J]. 气象,2015,41(6):685-694.(ZHAO L N,LIU L,LIU Y,et al. Impact of observation uncertainty of precipitation on the Brier Skill Score of global ensemble prediction system[J]. Meteorological Monthly,2015,41(6):685-694.) [16] 温忠麟, 侯杰泰, 马什赫伯特. 结构方程模型检验:拟合指数与卡方准则[J]. 心理学报,2004,36(2):186-194.(WEN Z L, HOU J T,MASH H W. Structural equation model testing:cutoff criteria for goodness of fit indices and Chi-square test[J]. Acta Psychologica Sinica,2004,36(2):186-194.) [17] GUYON I,WESTON J,BARNHILL S,et al. Gene selection for cancer classification using support vector machines[J]. Machine Learning,2002,46(1/2/3):389-422. [18] FISHER R A. The use of multiple measurements in taxonomic problems[J]. Annals of Eugenics,1936,7(2):179-188. [19] DUA D,GRAFF C. UCI machine learning repository[DS/OL].[2020-11-17]. http://archive.ics.uci.edu/ml. [20] XIA Y F,LIU C Z,LI Y Y,et al. A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring[J]. Expert Systems with Applications, 2017, 78:225-241. |