《计算机应用》唯一官方网站 ›› 2020, Vol. 40 ›› Issue (9): 2479-2492.DOI: 10.11772/j.issn.1001-9081.2020010038
所属专题: 综述
• 人工智能 • 下一篇
魏文钰1, 杨文忠1, 马国祥2, 黄梅1
收稿日期:
2020-01-15
修回日期:
2020-04-02
发布日期:
2020-04-04
出版日期:
2020-09-10
通讯作者:
杨文忠
作者简介:
魏文钰(1995-),女,新疆哈密人,硕士研究生,主要研究方向:计算机视觉、行人再识别、信息安全;杨文忠(1971-),男,河南南阳人,副教授,博士,CCF会员,主要研究方向:网络舆情、情报分析、信息安全、无线传感器网络;马国祥(1993-),男,新疆伊宁人,硕士研究生,主要研究方向:计算机视觉、机器学习、信息安全;黄梅(1996-),女,新疆和硕人,硕士研究生,主要研究方向:计算机视觉、遥感图像处理。
基金资助:
WEI Wenyu1, YANG Wenzhong1, MA Guoxiang2, HUANG Mei1
Received:
2020-01-15
Revised:
2020-04-02
Online:
2020-04-04
Published:
2020-09-10
Supported by:
摘要: 行人再识别(Re-id)作为智能视频监控技术之一,其目的是在不同的摄像机视图中检索出指定身份的行人,因此该项技术对维护社会治安稳定具有重大研究意义。针对传统的手工特征方法难以应对行人Re-id任务中复杂的摄像机环境的问题,大量基于深度学习的行人Re-id方法被提出,极大地推动了行人Re-id技术的发展。为了深入了解基于深度学习的行人Re-id技术,整理和分析了大量相关文献,首先从图像、视频、跨模态这3个方面展开综述性介绍,将图像行人Re-id技术分为有监督和无监督两大类并分别进行概括;然后列举了部分相关数据集,并对近年来在图像和视频数据集上的一些算法进行性能的比较与分析;最后总结了行人Re-id技术的发展难点,并深入讨论了该技术未来可能的研究方向。
中图分类号:
魏文钰, 杨文忠, 马国祥, 黄梅. 基于深度学习的行人再识别技术研究综述[J]. 计算机应用, 2020, 40(9): 2479-2492.
WEI Wenyu, YANG Wenzhong, MA Guoxiang, HUANG Mei. Survey of person re-identification technology based on deep learning[J]. Journal of Computer Applications, 2020, 40(9): 2479-2492.
[1] ZHENG L, YANG Y, HAUPTMANN A G. Person re-identification:past, present and future[EB/OL].[2020-03-20]. https://arxiv.org/pdf/1610.02984.pdf. [2] ZHENG L, SHEN L, TIAN L, et al. Scalable person reidentification:a benchmark[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:1116-1124. [3] RISTANI E, SOLERA F, ZOU R S, et al. Performance measures and a data set for multi-target, multi-camera tracking[EB/OL].[2020-03-20]. https://arxiv.org/pdf/1609.01775.pdf. [4] 龚锐,丁胜,章超华,等. 基于深度学习的轻量级和多姿态人脸识别方法[J]. 计算机应用, 2020, 40(3):704-709.(GONG R, DING S, ZHANG C H, et al. Lightweight and multi-pose face recognition method based on deep learning[J]. Journal of Computer Applications, 2020, 40(3):704-709.) [5] PENG C, WANG N, LI J, et al. DLFace:deep local descriptor for cross-modality face recognition[J]. Pattern Recognition, 2019, 90:161-171. [6] 董静,耿达,郭迎港,等. 室内环境下基于R-CNN的光照自适应物体检测[J]. 计算机工程与应用, 2019, 55(2):168-173, 252.(DONG J, GENG D, GUO Y G, et al. Illumination adaptive object detection based on R-CNN under indoor environment[J]. Computer Engineering and Applications, 2019, 55(2):168-173, 252.) [7] GHIASI G, LIN T Y, LE Q V. NAS-FPN:learning scalable feature pyramid architecture for object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:7029-7038. [8] 王俊岭,王硕豪. 基于孪生网络的深度学习目标跟踪算法[J]. 计算机工程与设计, 2019, 40(10):3014-3019.(WANG J L, WANG S H. Deep learning siamese networks for object tracking[J]. Computer Engineering and Design, 2019, 40(10):3014-3019.) [9] SUN S, AKHTAR N, SONG H, et al. Deep affinity network for multiple object tracking[EB/OL].[2020-03-20]. https://arxiv.org/pdf/1810.11780.pdf. [10] LI W, ZHAO R, XIAO T, et al. DeepReID:deep filter pairing neural network for person re-identification[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2014:152-159. [11] WANG F, ZUO W, LIN L, et al. Joint learning of single-image and cross-image representations for person re-identification[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:1288-1296. [12] ZHENG L, ZHANG H, SUN S, et al. Person re-identification in the wild[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:3346-3355. [13] XIAO T, LI H, OUYANG W, et al. Learning deep feature representations with domain guided dropout for person reidentification[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:1249-1258. [14] XIA B, GONG Y, ZHANG Y, et al. Second-order non-local attention networks for person re-identification[EB/OL].[2019-12-10]. https://arxiv.org/pdf/1909.00295.pdf. [15] WANG G, YUAN Y, CHEN X, et al. Learning discriminative features with multiple granularities for person re-identification[C]//Proceedings of the 26th ACM International Conference on Multimedia. New York:ACM, 2018:274-282. [16] FU Y, WEI Y, ZHOU Y, et al. Horizontal pyramid matching for person re-identification[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press, 2019:8295-8302. [17] ZHENG F, DENG C, SUN X, et al. Pyramidal person reidentification via multi-loss dynamic training[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:8506-8514. [18] SHEN Y, JI R, HONG X, et al. A part power set model for scalefree person retrieval[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press, 2019:3397-3403. [19] SU C, LI J, ZHANG S, et al. Pose-driven deep convolutional model for person re-identification[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:3980-3989. [20] ZHAO H, TIAN M, SUN S, et al. Spindle net:person reidentification with human body region guided feature decomposition and fusion[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:907-915. [21] WEI L, ZHANG S, YAO H, et al. GLAD:global-local-alignment descriptor for scalable person re-identification[J]. IEEE Transactions on Multimedia, 2019, 21(4):986-999. [22] LIU H, FENG J, QI M, et al. End-to-end comparative attention networks for person re-identification[J]. IEEE Transactions on Image Processing, 2017, 26(7):3492-3506. [23] LIU X, ZHAO H, TIAN M, et al. HydraPlus-Net:attentive deep features for pedestrian analysis[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:350-359. [24] LI W, ZHU X, GONG S. Harmonious attention network for person re-identification[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:2285-2294. [25] SUN Y, ZHENG L, YANG Y, et al. Beyond part models:person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11208. Cham:Springer, 2018:501-518. [26] ZHANG X, LUO H, FAN X, et al. AlignedReID:surpassing human-level performance in person re-identification[EB/OL].[2019-12-10]. https://arxiv.org/pdf/1711.08184.pdf. [27] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:3431-3440. [28] WEI S E, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:4724-4732. [29] INSAFUTDINOV E, PISHCHULIN L, ANDRES B, et al. DeeperCut:a deeper, stronger, and faster multi-person pose estimation model[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9910. Cham:Springer, 2016:34-50. [30] XU K, BA J, KIROS R, et al. Show, attend and tell:Neural image caption generation with visual attention[EB/OL].[2019-12-10]. https://arxiv.org/pdf/1502.03044.pdf. [31] ZHANG Z, ZOU Y, GAN C. Textual sentiment analysis via three different attention convolutional neural networks and crossmodality consistent regression[J]. Neurocomputing, 2018, 275:1407-1415. [32] 胡正平,刁鹏成,张瑞雪,等. 基于注意力机制的时间分组深度网络行为识别算法[J]. 模式识别与人工智能, 2019, 32(10):892-900.(HU Z P, DIAO P C, ZHANG R X, et al. Temporal group deep network action recognition algorithm based on attention mechanism[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(10):892-900.) [33] LIAO S, HU Y, ZHU X, et al. Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:2197-2206. [34] KÖSTINGER M, HIRZER M, WOLHLHART P, et al. Large scale metric learning from equivalence constraints[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2012:2288-2295. [35] VARIOR R R, HALOI M, WANG G. Gated siamese convolutional neural network architecture for human re-identification[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9912. Cham:Springer, 2016:791-808. [36] WANG J, SONG Y, LEUNG T, et al. Learning fine-grained image similarity with deep ranking[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2014:1386-1393. [37] CHENG D, GONG Y, ZHOU S, et al. Person re-identification by multi-channel parts-based CNN with improved triplet loss function[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:1335-1344. [38] HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification[EB/OL].[2019-12-10]. https://arxiv.org/pdf/1703.07737.pdf. [39] CHEN W, CHEN X, ZHANG J, et al. Beyond triplet loss:a deep quadruplet network for person re-identification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:1320-1329. [40] ZHONG W, ZHANG T, JIANG L F, et al. Discriminative representation learning for person re-identification via multi-loss training[J]. Journal of Visual Communication and Image Representation, 2019, 62:267-278. [41] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet:a unified embedding for face recognition and clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:815-823. [42] GENG M, WANG Y, XIANG T, et al. Deep transfer learning for person re-identification[EB/OL].[2019-12-10]. https://arxiv.org/pdf/1611.05244.pdf. [43] SONG H O, XIANG Y, JEGELKA S, et al. Deep metric learning via lifted structured feature embedding[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:4004-4012. [44] YU H, WU A, ZHENG W. Cross-view asymmetric metric learning for unsupervised person re-identification[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:994-1002. [45] LIN Y, DONG X, ZHENG L, et al. A bottom-up clustering approach to unsupervised person re-identification[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press, 2019:8738-8745. [46] LI M, ZHU X, GONG S. Unsupervised person re-identification by deep learning tracklet association[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11208. Cham:Springer, 2018:772-788. [47] LI M, ZHU X, GONG S. Unsupervised tracklet person reidentification[EB/OL].[2019-12-10]. https://arxiv.org/pdf/1903.00535.pdf. [48] WU J, LIU H, YANG Y, et al. Unsupervised graph association for person re-identification[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019:8320-8329. [49] ZHANG X, CAO J, SHEN C, et al. Self-training with progressive augmentation for unsupervised cross-domain person reidentification[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019:8221-8230. [50] FAN H, ZHENG L, YAN C, et al. Unsupervised person reidentification:clustering and fine-tuning[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2018, 14(4):No. 83. [51] LI Y J, YANG F E, LIU Y C, et al. Adaptation and reidentification network:an unsupervised deep transfer learning approach to person re-identification[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE, 2018:285-291. [52] WU J, LIAO S, LEI Z, et al. Clustering and dynamic sampling based unsupervised domain adaptation for person re-identification[C]//Proceedings of the 2019 IEEE International Conference on Multimedia and Expo. Piscataway:IEEE, 2019:886-891. [53] LONG M, ZHU H, WANG J, et al. Deep transfer learning with joint adaptation networks[C]//Proceedings of the 34th International Conference on Machine Learning. New York:JMLR. org, 2017:2208-2217. [54] CHEN C, CHEN Z, JIANG B, et al. Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press, 2019:3296-3303. [55] WEI L, ZHANG S, GAO W, et al. Person transfer GAN to bridge domain gap for person re-identification[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:79-88. [56] ZHONG Z, ZHENG L, ZHENG Z, et al. Camera style adaptation for person re-identification[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:5157-5166. [57] ZHOU S, KE M, LUO P. Multi-camera transfer GAN for person reidentification[J]. Journal of Visual Communication and Image Representation, 2019, 59:393-400. [58] CHEN Y, ZHU X, GONG S. Instance-guided context rendering for cross-domain person re-identification[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019:232-242. [59] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2014:2672-2680. [60] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:2242-2251. [61] CHOI Y, CHOI M, KIM M, et al. StarGAN:unified generative adversarial networks for multi-domain image-to-image translation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:8789-8797. [62] WEI X, LUO J, WU J, et al. Selective convolutional descriptor aggregation for fine-grained image retrieval[J]. IEEE Transactions on Image Processing, 2017, 26(6):2868-2881. [63] ZHENG Z, ZHENG L, YANG Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:3774-3782. [64] ZHANG C, WU L, WANG Y. Crossing generative adversarial networks for cross-view person re-identification[J]. Neurocomputing, 2019, 340:259-269. [65] WANG J, ZHU X, GONG S, et al. Transferable joint attributeidentity deep learning for unsupervised person re-identification[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:2275-2284. [66] ZHU X, MORERIO P, MURINO V. Unsupervised domainadaptive person re-identification based on attributes[C]//Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway:IEEE, 2019:4110-4114. [67] GHEISSARI N, SEBASTIAN T B, HARTLEY R. Person reidentification using spatiotemporal appearance[C]//Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2006:1528-1535. [68] TRUONG CONG D N, ACHARD C, KHOUDOUR L, et al. Video sequences association for people re-identification across multiple non-overlapping cameras[C]//Proceedings of the 15th International Conference on Image Analysis and Processing, LNCS 5716. Berlin:Springer, 2009:179-189. [69] BEGAGKAR-GALA A, SHAH S K. Multiple person reidentification using part based spatio-temporal color appearance model[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops. Piscataway:IEEE, 2011:1721-1728. [70] MCLAUGHLIN N, MARTINEZ DEL RINCON J, MILLER P. Recurrent convolutional network for video-based person reidentification[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:1325-1334. [71] ZHOU Z, HUANG Y, WANG W, et al. See the forest for the trees:Joint spatial and temporal recurrent neural networks for videobased person re-identification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:6776-6785. [72] XU S, CHENG Y, GU K, et al. Jointly attentive spatial-temporal pooling networks for video-based person re-identification[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:4743-4752. [73] ZHU X, JING X, YOU X, et al. Video-based person reidentification by simultaneously learning intra-video and intervideo distance metrics[J]. IEEE Transactions on Image Processing, 2018, 27(11):5683-5695. [74] HUANG W, LIANG C, YU Y, et al. Video-based person reidentification via self paced weighting[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press, 2018:2273-2280. [75] MENG J, WU A, ZHENG W. Deep asymmetric video-based person re-identification[J]. Pattern Recognition, 2019, 93:430-441. [76] MENG J, WU S, ZHENG W. Weakly supervised person reidentification[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:760-769. [77] JIAO J, ZHENG W S, WU A, et al. Deep low-resolution person reidentification[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press, 2018:6967-6974. [78] ZHUANG Z, AI H, CHEN L, et al. Cross-resolution person reidentification with deep antithetical learning[C]//Proceedings of the 14th Asian Conference on Computer Vision, LNCS 11363. Cham:Springer, 2018:233-248. [79] WANG G, ZHANG T, CHENG J, et al. RGB-infrared crossmodality person re-identification via joint pixel and feature alignment[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019:3622-3631. [80] WANG Z, WANG Z, ZHENG Y Q, et al. Learning to reduce duallevel discrepancy for infrared-visible person re-identification[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:618-626. [81] HAFNER F, BHUIYAN A, KOOIJ J F P, et al. A cross-modal distillation network for person re-identification in RGB-depth[EB/OL].[2019-12-10]. https://arxiv.org/pdf/1810.11641.pdf. [82] LI S, XIAO T, LI H, et al. Identity-aware textual-visual matching with latent co-attention[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:1908-1917. [83] PANG L, WANG Y, SONG Y Z, et al. Cross-domain adversarial feature learning for sketch re-identification[C]//Proceedings of the 26th ACM International Conference on Multimedia. New York:ACM, 2018:609-617. [84] GRAY D, TAO H. Viewpoint invariant pedestrian recognition with an ensemble of localized features[C]//Proceedings of the 2008 European Conference on Computer Vision, LNCS 5302. Berlin:Springer, 2008:262-275. [85] LOY C C, XIANG T, GONG S. Multi-camera activity correlation analysis[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2009:1988-1995. [86] LI W, ZHAO R, WANG X. Human reidentification with transferred metric learning[C]//Proceedings of the 11th Asian Conference on Computer Vision, LNCS 7724. Berlin:Springer, 2012:31-44. [87] ZHONG Z, ZHENG L, CAO D, et al. Re-ranking person reidentification with k-reciprocal encoding[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:3652-3661. [88] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards realtime object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2015:91-99. [89] HIRZER M, BELEZNAI C, ROTH P M, et al. Person reidentification by descriptive and discriminative classification[C]//Proceedings of the 2011 Scandinavian Conference on Image Analysis, LNCS 6688. Berlin:Springer, 2011:91-102. [90] WANG T, GONG S, ZHU X, et al. Person re-identification by video ranking[C]//Proceedings of the 2014 European Conference on Computer Vision, LNCS 8692. Cham:Springer, 2014:688-703. [91] ZHENG L, BIE Z, SUN Y, et al. MARS:a video benchmark for large-scale person re-identification[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9910. Cham:Springer, 2016:868-884. [92] LI J, ZHANG S, WANG J, et al. LVreID:person re-identification with long sequence videos[EB/OL].[2019-12-10]. https://arxiv.org/pdf/1712.07286v1.pdf. [93] CHENG D S, CRISTANI M, STOPPA M, et al. Custom pictorial structures for re-identification[C]//Proceedings of the 22nd British Machine Vision Conference. Durham:BMVA Press, 2011:No. 686. [94] WU A, ZHENG W, YU H, et al. RGB-infrared cross-modality person re-identification[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:5390-5399. [95] NGUYEN D T, HONG H G, KIM K W, et al. Person recognition system based on a combination of body images from visible light and thermal cameras[J]. Sensors, 2017, 17(3):No. 605. [96] MUNARO M, FOSSATI A, BASSO A, et al. One-shot person reidentification with a consumer depth camera[M]//GONG S, CRISTANI M, YAN S, et al. Person Re-Identification, Advances in Computer Vision and Pattern Recognition. London:Springer, 2014:161-181. [97] LIU H, HU L, MA L. Online RGB-D person re-identification based on metric model update[J]. CAAI Transactions on Intelligence Technology, 2017, 2(1):48-55. [98] TAY C P, ROY S, YAP K H. AANet:attribute attention network for person re-identifications[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:7127-7136. [99] QUAN R, DONG X, WU Y, et al. Auto-ReID:searching for a partaware ConvNet for person re-identification[EB/OL].[2019-12-10]. https://arxiv.org/pdf/1903.09776.pdf. [100] ZHOU K, YANG Y, CAVALLARO A, et al. Omni-scale feature learning for person re-identification[EB/OL].[2020-03-20]. https://arxiv.org/pdf/1905.00953.pdf. [101] ZHENG Z, YANG X, YU Z, et al. Joint discriminative and generative learning for person re-identification[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:2133-2142. [102] CHEN B, DENG W, HU J. Mixed high-order attention network for person re-identification[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019:371-381. [103] WU D, WANG C, WU Y, et al. Attention deep model with multiscale deep supervision for person re-identification[EB/OL].[2020-03-20]. https://arxiv.org/pdf/1911.10335.pdf. [104] YAN C, PANG G, BAI X, et al. Unified multifaceted feature learning for person re-identification[EB/OL].[2020-03-20]. https://arxiv.org/pdf/1911.08651.pdf. [105] CHEN H, LAGADEC B, BREMOND F. Learning discriminative and generalizable representations by spatial-channel partition for person re-identification[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE, 2020:2472-2481. [106] ZHONG Z, ZHENG L, LI S, et al. Generalizing a person retrieval model hetero-and homogeneously[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11217. Cham:Springer, 2018:176-192. [107] ZHONG Z, ZHENG L, LOU Z, et al. Invariance matters:exemplar memory for domain adaptive person re-identification[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:598-607. [108] YOU J, WU A, LI X, et al. Top-push video-based person reidentification[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:1345-1353. [109] 刘一敏,蒋建国,齐美彬,等. 融合成对抗网络和姿态估计的视频行人再识别方法[J]. 自动化学报, 2020, 46(3):576-584. (LIU Y M, JIANG J G, QI M B, et al. Video-based person reidentification method based on GAN and pose estimation[J]. Acta Automatica Sinica, 2020, 46(3):576-584.) [110] LIU Y, YAN J, OUYANG W. Quality aware network for set to set recognition[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:4694-4703. [111] LIU Y, YUAN Z, ZHOU W, et al. Spatial and temporal mutual promotion for video-based person re-identification[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press, 2019:8786-8793. [112] CHEN D, LI H, XIAO T, et al. Video person re-identification with competitive snippet-similarity aggregation and co-attentive snippet embedding[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:1169-1178. [113] LI J, ZHANG S, HUANG T. Multi-scale 3D convolution network for video based person re-identification[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press, 2019:8618-8625. [114] LI J, ZHANG S, WANG J, et al. Global-local temporal representations for video person re-identification[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019:3957-3966. |
[1] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[2] | 王熙源, 张战成, 徐少康, 张宝成, 罗晓清, 胡伏原. 面向手术导航3D/2D配准的无监督跨域迁移网络[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2911-2918. |
[3] | 潘烨新, 杨哲. 基于多级特征双向融合的小目标检测优化模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2871-2877. |
[4] | 李云, 王富铕, 井佩光, 王粟, 肖澳. 基于不确定度感知的帧关联短视频事件检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2903-2910. |
[5] | 李顺勇, 李师毅, 胥瑞, 赵兴旺. 基于自注意力融合的不完整多视图聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2696-2703. |
[6] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. |
[7] | 陈虹, 齐兵, 金海波, 武聪, 张立昂. 融合1D-CNN与BiGRU的类不平衡流量异常检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2493-2499. |
[8] | 赵宇博, 张丽萍, 闫盛, 侯敏, 高茂. 基于改进分段卷积神经网络和知识蒸馏的学科知识实体间关系抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2421-2429. |
[9] | 张春雪, 仇丽青, 孙承爱, 荆彩霞. 基于两阶段动态兴趣识别的购买行为预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2365-2371. |
[10] | 高鹏淇, 黄鹤鸣, 樊永红. 融合坐标与多头注意力机制的交互语音情感识别[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2400-2406. |
[11] | 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2551-2557. |
[12] | 顾焰杰, 张英俊, 刘晓倩, 周围, 孙威. 基于时空多图融合的交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2618-2625. |
[13] | 石乾宏, 杨燕, 江永全, 欧阳小草, 范武波, 陈强, 姜涛, 李媛. 面向空气质量预测的多粒度突变拟合网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2643-2650. |
[14] | 赵亦群, 张志禹, 董雪. 基于密集残差物理信息神经网络的各向异性旅行时计算方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2310-2318. |
[15] | 高阳峄, 雷涛, 杜晓刚, 李岁永, 王营博, 闵重丹. 基于像素距离图和四维动态卷积网络的密集人群计数与定位方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2233-2242. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||