1 |
张学武,丁燕琼,闫萍.一种基于红外成像的强反射金属表面缺陷视觉检测方法[J].光学学报,2011,31(3):104-112. 10.3788/aos201131.0312004
|
|
ZHANG X W, DING Y Q, YAN P. Vision inspection of metal surface defects based on infrared imaging [J]. Acta Optica Sinica, 2011, 31(3): 104-112. 10.3788/aos201131.0312004
|
2 |
汪开灿.基于电磁超声的钢轨缺陷检测系统的研究[D].哈尔滨:哈尔滨工业大学,2010:7-8. 10.1109/iciea.2010.5516784
|
|
WANG K C. Research of rail flaw detection system based on electromagnetic acoustic technique [D]. Harbin: Harbin Institute of Technology, 2010: 7-8. 10.1109/iciea.2010.5516784
|
3 |
LI P, LIANG J L, SHEN X B, et al. Textile fabric defect detection based on low-rank representation [J]. Multimedia Tools and Applications, 2019, 78(1): 99-124. 10.1007/s11042-017-5263-z
|
4 |
袁野,谭晓阳.复杂环境下的冰箱金属表面缺陷检测[J].计算机应用,2021,41(1):270-274
|
|
YUAN Y, TAN X Y. Defect detection of refrigerator metal surface in complex environment [J]. Journal of Computer Applications, 2021, 41(1): 270-274.
|
5 |
HE Y, SONG K C, MENG Q G, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features [J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1493-1504. 10.1109/tim.2019.2915404
|
6 |
LUO J, ZHANG Z. Automatic colour printing inspection by image processing [J]. Journal of Materials Processing Technology, 2003, 139(1/2/3): 373-378. 10.1016/s0924-0136(03)00534-x
|
7 |
章毓晋,黄翔宇,李睿.自动检测精细印刷品缺陷的初步方案[J].中国体视学与图像分析,2001,6(2):109-112,116. 10.3969/j.issn.1007-1482.2001.02.011
|
|
ZHANG Y J, HUANG X Y, LI R. A preliminary scheme for automatic detection of fine presswork defect [J]. Chinese Journal of Stereology and Image Analysis, 2001, 6(2): 109-112, 116. 10.3969/j.issn.1007-1482.2001.02.011
|
8 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. 10.1109/cvpr.2014.81
|
9 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 10.1109/tpami.2016.2577031
|
10 |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. 10.1109/tpami.2015.2389824
|
11 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS9905. Piscataway: IEEE, 2016: 21-37.
|
12 |
TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787. 10.1109/cvpr42600.2020.01079
|
13 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. (2020-04-23) [2020-10-15]. . 10.1109/cvpr46437.2021.01283
|
14 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 10.1109/cvpr.2016.91
|
15 |
李云鹏,侯凌燕,王超.基于YOLOv3的自动驾驶中运动目标检测[J].计算机工程与设计,2019,40(4):1139-1144.
|
|
LI Y P, HOU L Y, WANG C. Moving objects detection in automatic driving based on YOLOv3 [J]. Computer Engineering and Design, 2019, 40(4): 1139-1144.
|
16 |
REN P M, FANG W, DJAHEL S. A novel YOLO-based real-time people counting approach [C]// Proceedings of the 2017 International Smart Cities Conference. Piscataway: IEEE, 2017: 1-2. 10.1109/isc2.2017.8090864
|
17 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// Proceeding of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. 10.1109/cvpr.2017.690
|
18 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018-04-08) [2020-10-15]. . 10.1109/cvpr.2018.00430
|
19 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90
|
20 |
MISRA D. Mish: a self regularized non-monotonic neural activation function [C]// Proceedings of the 2020 British Machine Vision Conference. Durham: BMVA Press, 2020: Article No.928.
|
21 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768. 10.1109/cvpr.2018.00913
|
22 |
ZAGORUYKO S, KOMODAKIS N. Learning to compare image patches via convolutional neural networks [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 4353-4361. 10.1109/cvpr.2015.7299064
|