《计算机应用》唯一官方网站 ›› 2021, Vol. 41 ›› Issue (11): 3206-3212.DOI: 10.11772/j.issn.1001-9081.2020121958
所属专题: 人工智能
楼豪杰1,2, 郑元林1,2(), 廖开阳1,2, 雷浩1,2, 李佳1,2
Haojie LOU1,2, Yuanlin ZHENG1,2(), Kaiyang LIAO1,2, Hao LEI1,2, Jia LI1,2
摘要:
在印刷工业生产中,针对直接使用YOLOv4网络进行印刷缺陷目标检测精度低、所需训练样本数量大的问题,提出了一种基于Siamese-YOLOv4的印刷品缺陷目标检测方法。首先,使用了一种图像分割和随机参数变化的策略对数据集进行增强;然后,在主干网络中增加了孪生相似性检测网络,并在相似性检测网络中引入Mish激活函数来计算出图像块的相似度,在此之后将相似度低于阈值的区域作为缺陷候选区域;最后,训练候选区域图像,从而实现缺陷目标的精确定位与分类。实验结果表明:Siamese-YOLOv4模型的检测精度优于主流的目标检测模型,在印刷缺陷数据集上,Siamese-YOLOv4网络对卫星墨滴缺陷的检测准确率为98.6%,对脏点缺陷的检测准确率为97.8%,对漏印缺陷的检测准确率为93.9%;检测的平均精度均值(mAP)达到了96.8%,相较于YOLOv4算法、Faster R-CNN算法、SSD算法、EfficientDet算法分别提高了6.5个百分点、6.4个百分点、14.9个百分点、10.6个百分点。所提Siamese-YOLOv4模型一方面在印刷品缺陷检测中有较低的误检率和漏检率,另一方面通过相似性检测网络计算图像块的相似度从而提高了检测的精度,表明所提缺陷检测方法可应用于印刷质检以提高印刷企业的缺陷检测水平。
中图分类号: