[1] LIU B, ZHANG L. A survey of opinion mining and sentiment analysis[M]//AGGARWAL C C, ZHAI C X. Mining Text Data. Boston:Springer, 2012:415-463. [2] PANG B, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning techniques[C]//Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2002:79-86. [3] 李平, 戴月明, 王艳. 基于混合卡方统计量与逻辑回归的文本情感分析[J]. 计算机工程, 2017, 43(12):192-196, 202.(LI P, DAI Y M, WANG Y. Text sentiment analysis based on hybrid Chisquare statistic and logistic regression[J]. Computer Engineering, 2017, 43(12):192-196, 202.) [4] 杨超, 冯时, 王大玲, 等. 基于情感词典扩展技术的网络舆情倾向性分析[J]. 小型微型计算机系统, 2010, 31(4):691-695. (YANG C, FENG S, WANG D L, et al. Analysis on web public opinion orientation based on extending sentiment lexicon[J]. Journal of Chinese Computer Systems, 2010, 31(4):691-995.) [5] 周咏梅, 杨佳能, 阳爱民. 面向文本情感分析的中文情感词典构建方法[J]. 山东大学学报(工学版), 2013, 43(6):27-33. (ZHOU Y M, YANG J N, YANG A M. A method on building Chinese sentiment lexicon for text sentiment analysis[J]. Journal of Shandong University (Engineering Science), 2013, 43(6):27-33.) [6] 欧阳继红, 刘燕辉, 李熙铭, 等. 基于LDA的多粒度主题情感混合模型[J]. 电子学报, 2015, 43(9):1875-1880.(OUYANG J H, LIU Y H, LI X M, et al. Multi-grain sentiment/topic model based on LDA[J]. Acta Electronica Sinica, 2015, 43(9):1875-1880.) [7] YOUNG T, HAZARIKA D, PORIA S, et al. Recent trends in deep learning based natural language processing[review article] [J]. IEEE Computational Intelligence Magazine, 2018, 13(3):55-75. [8] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2014:1746-1751. [9] TANG D Y, QIN B, LIU T. Aspect level sentiment classification with deep memory network[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2016:214-224. [10] 梁斌, 刘全, 徐进, 等. 基于多注意力卷积神经网络的特定目标情感分析[J]. 计算机研究与发展, 2017, 54(8):1724-1735. (LIANG B, LIU Q, XU J, et al. Aspect-based sentiment analysis based on multi-attention CNN[J]. Journal of Computer Research and Development, 2017, 54(8):1724-1735.) [11] LUO W J, LI Y J, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc., 2016:4905-4913. [12] 李平, 戴月明, 吴定会. 双通道卷积神经网络在文本情感分析中的应用[J]. 计算机应用, 2018, 38(6):1542-1546.(LI P, DAI Y M, WU D H. Application of dual-channel convolutional neural network in sentiment analysis[J]. Journal of Computer Applications, 2018, 38(6):1542-1546.) [13] 赵宏, 王乐, 王伟杰. 基于BiLSTM-CNN串行混合模型的文本情感分析[J]. 计算机应用, 2020, 40(1):16-22.(ZHAO H, WANG L, WANG W J. Text sentiment analysis based on serial hybrid model of bi-directional long short-term memory and convolutional neural network[J]. Journal of Computer Applications, 2020, 40(1):16-22.) [14] 蔡国永, 夏彬彬. 基于卷积神经网络的图文融合媒体情感预测[J]. 计算机应用, 2016, 36(2):428-431, 477.(CAI G Y, XIA B B. Multimedia sentiment analysis based on convolutional neural network[J]. Journal of Computer Applications, 2016, 36(2):428-431, 477.) [15] DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks[C]//Proceedings of the 34th International Conference on Machine Learning. New York:JMLR. org, 2017:933-941. [16] 柳杨, 吉立新, 黄瑞阳, 等. 基于门控卷积机制与层次注意力机制的多语义词向量计算方法[J]. 中文信息学报, 2018, 32(7):1-10, 19.(LIU Y, JI L X, HUANG R Y, et al. A multisense word embedding method based on gated convolution and hierarchical attention mechanism[J]. Journal of Chinese Information Processing, 2018, 32(7):1-10, 19.) [17] XUE W, LI T. Aspect based sentiment analysis with gated convolutional networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2018, 1:2514-2523. [18] 李兴亚, 陈钰枫, 徐金安, 等. 融合门控机制的远程监督关系抽取方法[J]. 北京大学学报(自然科学版), 2020, 56(1):39-44. (LI X Y, CHEN Y F, XU J A, et al. Distant supervision for relation extraction with gate mechanism[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(1):39-44.) [19] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. (2013-09-07)[2020-11-12]. https://arxiv.org/pdf/1301.3781.pdf. [20] 朱烨, 陈世平. 融合卷积神经网络和注意力的评论文本情感分析[J]. 小型微型计算机系统, 2020, 41(3):551-557.(ZHU Y, CHEN S P. Commentary text sentiment analysis combining convolution neural network and attention[J]. Journal of Chinese Computer Systems, 2020, 41(3):551-557.) [21] LAI S W, XU L H, LIU K, et al. Recurrent convolutional neural networks for text classification[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press, 2015:2267-2273. [22] BAKTHA K, TRIPATHY B K. Investigation of recurrent neural networks in the field of sentiment analysis[C]//Proceedings of the 2017 International Conference on Communication and Signal Processing. Piscataway:IEEE, 2017:2047-2050. [23] BASNET A, TIMALSINA A K. Improving Nepali news recommendation using classification based on LSTM recurrent neural networks[C]//Proceedings of the IEEE 3rd International Conference on Computing, Communication and Security. Piscataway:IEEE, 2018:138-142. [24] AZIZ SHARFUDDIN A, NAFIS TIHAMI M, SAIFUL ISLAM M. A deep recurrent neural network with BiLSTM model for sentiment classification[C]//Proceedings of the 2018 International Conference on Bangla Speech and Language Processing. Piscataway:IEEE, 2018:1-4. |