《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (4): 1225-1234.DOI: 10.11772/j.issn.1001-9081.2021050722
所属专题: CCF第36届中国计算机应用大会 (CCF NCCA 2021)
• CCF第36届中国计算机应用大会 (CCF NCCA 2021) • 上一篇 下一篇
收稿日期:2021-04-22
修回日期:2021-06-04
接受日期:2021-06-08
发布日期:2021-07-22
出版日期:2022-04-10
通讯作者:
江勇
作者简介:赖涵光(1995—),男,福建泉州人,硕士研究生,主要研究方向:端到端智能传输控制基金资助:
Hanguang LAI1, Qing LI2, Yong JIANG1(
)
Received:2021-04-22
Revised:2021-06-04
Accepted:2021-06-08
Online:2021-07-22
Published:2022-04-10
Contact:
Yong JIANG
About author:LAI Hanguang, born in 1995, M. S. candidate. His research interests include end-to-end intelligent transmission control.Supported by:摘要:
针对轻量级基于学习的拥塞控制算法在某些场景下性能表现会出现断崖式下滑的问题,提出了一种基于场景变化的传输控制协议拥塞控制切换方案。首先,该方案模拟实时的网络环境;然后,根据实时的环境参数来识别场景;最后,将当前的拥塞控制算法切换至该场景下相对最优的轻量级基于学习的拥塞控制算法。实验结果表明,所提方案相较于原来使用单个拥塞控制算法的方案,例如测量瓶颈链路带宽和时延的拥塞控制(BBR)方案、面向性能的拥塞控制(PCC)方案等,可以使不同场景下的网络性能得到显著提升,总吞吐量增幅达到5%以上,总时延降幅达到10%以上。
中图分类号:
赖涵光, 李清, 江勇. 基于场景变化的传输控制协议拥塞控制切换方案[J]. 计算机应用, 2022, 42(4): 1225-1234.
Hanguang LAI, Qing LI, Yong JIANG. Transmission control protocol congestion control switching scheme based on scenario change[J]. Journal of Computer Applications, 2022, 42(4): 1225-1234.
| 拥塞控制算法 | 平均吞吐量/(Mb·s-1) | 平均时延/ms |
|---|---|---|
| BBR | 4.87 | 132 |
| PCC-Vivace | 4.49 | 113 |
| Copa | 4.78 | 106 |
| Cubic | 4.63 | 141 |
表1 网络带宽为5 Mb/s和网络延迟为100 ms时的平均吞吐量与平均时延
Tab. 1 Average throughput and average delay with network bandwidth of 5 Mb/s and network delay of 100 ms
| 拥塞控制算法 | 平均吞吐量/(Mb·s-1) | 平均时延/ms |
|---|---|---|
| BBR | 4.87 | 132 |
| PCC-Vivace | 4.49 | 113 |
| Copa | 4.78 | 106 |
| Cubic | 4.63 | 141 |
| 链路带宽/(Mb·s-1) | 网络延迟/ms | 随机丢包率/% | 使用算法 |
|---|---|---|---|
| 1~100 | 1 | 0 | Vivace |
| 10 | 0 | Copa | |
| 100 | 0 | BBR | |
| 500 | 0 | BBR、Copa | |
| 5 | 1 | 0.1~1 | Vivace |
| 10 | 0.1~1 | Copa | |
| 100 | 0.1~1 | BBR | |
| 500 | 0.1~1 | BBR、Copa |
表2 考察吞吐量时的最优拥塞控制算法
Tab. 2 Optimal congestion control algorithm when focusing on throughput
| 链路带宽/(Mb·s-1) | 网络延迟/ms | 随机丢包率/% | 使用算法 |
|---|---|---|---|
| 1~100 | 1 | 0 | Vivace |
| 10 | 0 | Copa | |
| 100 | 0 | BBR | |
| 500 | 0 | BBR、Copa | |
| 5 | 1 | 0.1~1 | Vivace |
| 10 | 0.1~1 | Copa | |
| 100 | 0.1~1 | BBR | |
| 500 | 0.1~1 | BBR、Copa |
| 链路带宽/(Mb·s-1) | 网络延迟/ms | 随机丢包率/% | 使用算法 |
|---|---|---|---|
| 1~20 | 1 | 0 | Copa |
| 1 | 10 | 0 | Copa |
| 5 | 10 | 0 | Copa、Vivace |
| 20 | 10 | 0 | Vivace |
| 1 | 100 | 0 | Vivace |
| 100 | 0 | Copa | |
| 5~20 | 500 | 0 | Vivace |
| 500 | 0 | Copa | |
| 1 | 10 | 0.1 | Copa |
| 5 | 10 | 0.1 | Vivace |
| 20 | 10 | 0.1 | Vivace |
| 1 | 10 | 0.5~1 | Copa |
| 5 | 10 | 0.5~1 | Vivace |
| 20 | 10 | 0.5~1 | Copa |
表3 考察时延时的最优拥塞控制算法
Tab. 3 Optimal congestion control algorithm when focusing on delay
| 链路带宽/(Mb·s-1) | 网络延迟/ms | 随机丢包率/% | 使用算法 |
|---|---|---|---|
| 1~20 | 1 | 0 | Copa |
| 1 | 10 | 0 | Copa |
| 5 | 10 | 0 | Copa、Vivace |
| 20 | 10 | 0 | Vivace |
| 1 | 100 | 0 | Vivace |
| 100 | 0 | Copa | |
| 5~20 | 500 | 0 | Vivace |
| 500 | 0 | Copa | |
| 1 | 10 | 0.1 | Copa |
| 5 | 10 | 0.1 | Vivace |
| 20 | 10 | 0.1 | Vivace |
| 1 | 10 | 0.5~1 | Copa |
| 5 | 10 | 0.5~1 | Vivace |
| 20 | 10 | 0.5~1 | Copa |
| 链路带宽/(Mb·s-1) | 网络延迟/ms | 随机丢包率/% | 使用算法 |
|---|---|---|---|
| 1~100 | 100 | 0 | Vivace |
| 100 | 0.1~1 | Copa |
表4 考察公平性时的最优拥塞控制算法
Tab. 4 Optimal congestion control algorithm when focusing on fairness
| 链路带宽/(Mb·s-1) | 网络延迟/ms | 随机丢包率/% | 使用算法 |
|---|---|---|---|
| 1~100 | 100 | 0 | Vivace |
| 100 | 0.1~1 | Copa |
| 链路带宽/(Mb·s-1) | 网络延迟/ms | 随机丢包率/% | 使用算法 |
|---|---|---|---|
| 1 | 1 | 0~1 | Copa |
| 5 | 1 | 0~0.5 | Vivace |
| 5 | 1 | 1 | BBR |
| 20 | 1 | 0~1 | BBR |
| 100 | 1 | 0~0.1 | BBR |
| 1 | 0.5~1 | Vivace |
表5 考察TCP友好性时的最优拥塞控制算法
Tab. 5 Optimal congestion control algorithm when focusing onTCP friendliness
| 链路带宽/(Mb·s-1) | 网络延迟/ms | 随机丢包率/% | 使用算法 |
|---|---|---|---|
| 1 | 1 | 0~1 | Copa |
| 5 | 1 | 0~0.5 | Vivace |
| 5 | 1 | 1 | BBR |
| 20 | 1 | 0~1 | BBR |
| 100 | 1 | 0~0.1 | BBR |
| 1 | 0.5~1 | Vivace |
| 组别 | 时刻 | 变化时刻/s | 带宽/(Mb·s-1) | 延迟/ms |
|---|---|---|---|---|
| 1 | t1 | 8 | 193 | 5 |
| t2 | 243 | 45 | 17 | |
| t3 | 364 | 7 | 91 | |
| t4 | 445 | 5 | 40 | |
| 2 | t1 | 48 | 19 | 22 |
| t2 | 178 | 2 | 16 | |
| t3 | 285 | 275 | 1 | |
| t4 | 438 | 2 | 7 | |
| 3 | t1 | 50 | 1 | 18 |
| t2 | 139 | 172 | 47 | |
| t3 | 368 | 2 | 13 | |
| t4 | 447 | 82 | 2 |
表6 三组实验随机产生的参数
Tab. 6 Randomly generated parameters in 3 sets of experiments
| 组别 | 时刻 | 变化时刻/s | 带宽/(Mb·s-1) | 延迟/ms |
|---|---|---|---|---|
| 1 | t1 | 8 | 193 | 5 |
| t2 | 243 | 45 | 17 | |
| t3 | 364 | 7 | 91 | |
| t4 | 445 | 5 | 40 | |
| 2 | t1 | 48 | 19 | 22 |
| t2 | 178 | 2 | 16 | |
| t3 | 285 | 275 | 1 | |
| t4 | 438 | 2 | 7 | |
| 3 | t1 | 50 | 1 | 18 |
| t2 | 139 | 172 | 47 | |
| t3 | 368 | 2 | 13 | |
| t4 | 447 | 82 | 2 |
| 时刻 | 第1组 | 第2组 | 第3组 | |||
|---|---|---|---|---|---|---|
| 吞吐量 | 时延 | 吞吐量 | 时延 | 吞吐量 | 时延 | |
| t1 | Copa | PCC-Vivace | BBR | PCC-Vivace | Copa | Copa |
| t2 | BBR | Copa | BBR | Copa | BBR | Copa |
| t3 | BBR | Copa | PCC-Vivace | Copa | Copa | Copa |
| t4 | BBR | Copa | Copa | Copa | PCC-Vivace | Copa |
表7 四个随机时刻下3组实验根据环境参数求得的拥塞控制算法
Tab. 7 Obtained congestion control algorithm based on environmental parameters at 4 random moments in 3 sets of experiments
| 时刻 | 第1组 | 第2组 | 第3组 | |||
|---|---|---|---|---|---|---|
| 吞吐量 | 时延 | 吞吐量 | 时延 | 吞吐量 | 时延 | |
| t1 | Copa | PCC-Vivace | BBR | PCC-Vivace | Copa | Copa |
| t2 | BBR | Copa | BBR | Copa | BBR | Copa |
| t3 | BBR | Copa | PCC-Vivace | Copa | Copa | Copa |
| t4 | BBR | Copa | Copa | Copa | PCC-Vivace | Copa |
| 1 | ALLMAN M, PAXSON V, STEVENS W. TCP congestion control: RFC 2581 [S]. Reston, VA: Internet Society, 1999-04. |
| 2 | SIVARAMAN A, WINSTEIN K, THAKER P, et al. An experimental study of the learnability of congestion control[C]// Proceedings of 2014 ACM Conference on SIGCOMM. New York: ACM, 2014:479-490. 10.1145/2740070.2626324 |
| 3 | JAY N, ROTMAN N H, GODFREY P B, et al. A deep reinforcement learning perspective on internet congestion control[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019:3050-3059. |
| 4 | ABBASLOO S, YEN C Y, CHAO H J. Classic meets modern: a pragmatic learning-based congestion control for the internet[C]// Proceedings of the 2020 Annual Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication. New York: ACM, 2020:632-647. 10.1145/3387514.3405892 |
| 5 | CARDWELL N, CHENG Y, GUNN C S, et al. BBR: congestion-based congestion control[J]. Communications of the ACM, 2017, 60(2): 58-66. 10.1145/3009824 |
| 6 | DONG M, LI Q X, ZARCHY D, et al. PCC: re-architecting congestion control for consistent high performance[C]// Proceedings of the 12th USENIX Symposium on Networked Systems Design and Implementation. Berkeley: USENIX Association, 2015:395-408. |
| 7 | ARUN V, BALAKRISHNAN H. Copa: congestion control combining objective optimization with window adjustments[C]// Proceedings of the 15th USENIX Symposium on Networked Systems Design and Implementation. Berkeley: USENIX Association, 2018:329-342. 10.1145/3232755.3232783 |
| 8 | ALIZADEH M, GREENBERG A, MALTZ D A, et al. Data center TCP (DCTCP)[C]// Proceedings of the 2010 ACM SIGCOMM Conference. New York: ACM, 2010:63-74. 10.1145/1851182.1851192 |
| 9 | SIVARAMAN A, WINSTEIN K, SUBRAMANIAN S, et al. No silver bullet: extending SDN to the data plane[C]// Proceedings of 12th ACM Workshop on Hot Topics in Networks. New York: ACM, 2013:No.19. 10.1145/2535771.2535796 |
| 10 | DONG M, MENG T, ZARCHY D, et al. PCC Vivace: online-learning congestion control[C]// Proceedings of the 15th USENIX Symposium on Networked Systems Design and Implementation. Berkeley: USENIX Association, 2018:343-356. |
| 11 | SCHAPIRA M, WINSTEIN K. Congestion-control throwdown[C]// Proceedings of the 16th ACM Workshop on Hot Topics in Networks. New York: ACM, 2017:122-128. 10.1145/3152434.3152446 |
| 12 | GETTYS J, NICHOLS K. Bufferbloat: dark buffers in the Internet[J]. Communications of the ACM, 2012, 55( 1):57-65. 10.1145/2063176.2063196 |
| 13 | HA S, RHEE I, XU L S. CUBIC: a new TCP-friendly high-speed TCP variant[J]. ACM SIGOPS Operating Systems Review, 2008, 42(5):64-74. 10.1145/1400097.1400105 |
| 14 | SCHWARZ M, SAUER C, DADUNA H, et al. M/M/1 Queueing systems with inventory[J]. Queueing Systems, 2006, 54(1): 55-78. 10.1007/s11134-006-8710-5 |
| 15 | WINSTEIN K, BALAKRISHNAN H. TCP ex Machina: computer-generated congestion control[C]// Proceedings of the 2013 ACM SIGCOMM Conference. New York: ACM, 2013:123-134. 10.1145/2486001.2486020 |
| 16 | FRANÇOIS-LAVET V, HENDERSON P, ISLAM R, et al. An introduction to deep reinforcement learning[J]. Foundations and Trends in Machine Learning, 2018, 11(3/4):219-354. 10.1561/2200000071 |
| 17 | OSBAND I, BLUNDELL C, PRITZEL A, et al. Deep exploration via bootstrapped DQN[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016:4033-4041. |
| 18 | LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[EB/OL]. (2019-07-05) [2021-03-03]. . |
| 19 | LI Z B, LIU P, XU C C, et al. Reinforcement learning-based variable speed limit control strategy to reduce traffic congestion at freeway recurrent bottlenecks[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(11):3204-3217. 10.1109/tits.2017.2687620 |
| 20 | KONDA V R, TSITSIKLIS J N. Actor-critic algorithms[C]// Proceedings of the 1999 Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 1999:1008-1014. |
| 21 | YAN F Y, MA J, HILL G D, et al. Pantheon: the training ground for Internet congestion-control research[C]// Proceedings of the 2018 USENIX Technical Conference. Berkeley: USENIX Association, 2018:731-743. |
| 22 | GIESSLER A, HÄNLE J, KÖNIG A, et al. Free buffer allocation — an investigation by simulation[J]. Computer Networks, 1978, 2(3):191-208. 10.1016/0376-5075(78)90028-4 |
| 23 | GAIL R, KLEINROCK L. An invariant property of computer network power[C]// Proceedings of the 1981 International Conference on Communications. Piscataway: IEEE, 1981:63.1.1-63.1.5. |
| 24 | SCHAUL T, QUAN J, ANTONOGLOU I, et al. Prioritized experience replay[EB/OL]. (2016-02-25) [2021-03-03].. |
| 25 | 沈耿彪,李清,江勇,等. 数据中心网络负载均衡问题研究[J]. 软件学报, 2020, 31(7):2221-2244. 10.13328/j.cnki.jos.006050 |
| SHEN G B, LI Q, JIANG Y, et al. Research on load balancing in data center networks[J]. Journal of Software, 2020, 31(7):2221-2244. 10.13328/j.cnki.jos.006050 |
| [1] | 李艳俊, 葛耀东, 王琦, 张伟国, 刘琛. 改进的KLEIN算法及其量子分析[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2810-2817. |
| [2] | 肖斌, 甘昀, 汪敏, 张兴鹏, 王照星. 基于端口注意力与通道空间注意力的网络异常流量检测[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1027-1034. |
| [3] | 项勇, 李艳俊, 黄丁韫, 陈愚, 谢惠琴. 全轮Shadow算法的差分和线性特征分析[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3839-3843. |
| [4] | 沈嫣然, 温昕, 张瑾昊, 张帅, 曹锐, 高保禄. 轻量级多尺度卷积网络的功能磁共振成像脑龄预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3949-3957. |
| [5] | 李博, 黄建强, 黄东强, 王晓英. 基于异构平台的稀疏矩阵向量乘自适应计算优化[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3867-3875. |
| [6] | 贺锋涛, 王炳辉, 张斌, 杨祎, 封一博. 改进TCP/IP帧结构的多参数信道传输性能评估方法[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3540-3547. |
| [7] | 陈豪, 夏振平, 程成, 林李兴, 张博文. 基于Transformer-CNN的轻量级图像超分辨率重建网络[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 292-299. |
| [8] | 赵光耀, 沈璇, 余波, 易晨晖, 李祯. 缩减轮的超轻量级分组密码算法PFP的不可能差分分析[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2784-2788. |
| [9] | 陈侃松, 郑园, 许立君, 王周宇, 张哲, 姚福娟. 基于ThetaMEX全局池化的人脸识别神经网络——ShuffaceNet[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2572-2580. |
| [10] | 刘炜, 张聪, 佘维, 宋轩, 田钊. 基于Merkle山脉的数据可信溯源方法[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2765-2771. |
| [11] | 李姚舜, 刘黎志. 嵌入注意力机制的轻量级钢筋检测网络[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2900-2908. |
| [12] | 文凯, 唐伟伟, 熊俊臣. 基于注意力机制和有效分解卷积的实时分割算法[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2659-2666. |
| [13] | 王娟, 袁旭亮, 武明虎, 郭力权, 刘子杉. 基于压缩提炼网络的实时语义分割方法[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 1993-2000. |
| [14] | 贺怀清, 闫建青, 惠康华. 基于深度残差网络的轻量级人脸识别方法[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2030-2036. |
| [15] | 贺丹, 何希平, 李悦, 袁锐, 牛园园. 基于区域分块和轻量级网络的人脸反欺骗方法[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3708-3714. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||