《计算机应用》唯一官方网站 ›› 2021, Vol. 41 ›› Issue (12): 3608-3613.DOI: 10.11772/j.issn.1001-9081.2021060886
所属专题: 第十八届中国机器学习会议(CCML 2021)
• 第十八届中国机器学习会议(CCML 2021) • 上一篇 下一篇
曹鸿亮1,2, 张莹1,2(), 武斌1, 李繁菀1, 那绪博1
Hongliang CAO1,2, Ying ZHANG1,2(), Bin WU1, Fanyu LI1, Xubo NA1
摘要:
已有很多机器学习算法能够很好地应对预测分类问题,但这些方法在用于小样本、大特征空间的医疗数据集时存在着预测准确率和F1值不高的问题。为改善肝移植并发症预测的准确率和F1值,提出一种基于迁移成分分析(TCA)和支持向量机(SVM)的肝移植并发症预测分类方法。该方法采用TCA进行特征空间的映射和降维,将源领域和目标领域映射到同一再生核希尔伯特空间,从而实现边缘分布自适应;迁移完成之后在源领域上训练SVM,训练完成后在目标领域上实现并发症的预测分析。在肝移植并发症预测实验中,针对并发症Ⅰ、并发症Ⅱ、并发症Ⅲa、并发症Ⅲb、并发症Ⅳ进行预测,与传统机器学习和渐进式对齐异构域适应(HDA)相比,所提方法的准确率提升了7.8%~42.8%,F1值达到85.0%~99.0%,而传统机器学习和HDA由于正负样本不均衡出现了精确率很高而召回率很低的情况。实验结果表明TCA结合SVM能够有效提高肝移植并发症预测的准确率和F1值。
中图分类号: