| 1 | 王智圣,李琪,汪静,等. 基于隐式用户反馈数据流的实时个性化推荐[J]. 计算机学报, 2016, 39(1): 52-64. 10.11897/SP.J.1016.2016.00052 | 
																													
																						|  | WANG Z S, LI Q, WANG J, et al. Real-time personalized recommendation based on implicit user feedback data stream[J]. Chinese Journal of Computers, 2016, 39(1): 52-64. 10.11897/SP.J.1016.2016.00052 | 
																													
																						| 2 | 俞东进,陈聪,吴建华,等. 基于隐式反馈数据的个性化游戏推荐[J]. 电子学报, 2018, 46(11): 2626-2632. 10.3969/j.issn.0372-2112.2018.11.009 | 
																													
																						|  | YU D J, CHEN C, WU J H, et al. Personalized game recommendation based on implicit feedback[J]. Acta Electronica Sinica, 2018, 46(11): 2626-2632. 10.3969/j.issn.0372-2112.2018.11.009 | 
																													
																						| 3 | AI Q Y, MAO J X, LIU Y Q, et al. Unbiased learning to rank: theory and practice[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 2305-2306. 10.1145/3269206.3274274 | 
																													
																						| 4 | JOACHIMS T, SWAMINATHAN A, SCHNABEL T. Unbiased learning-to-rank with biased feedback[C]// Proceedings of the 10th ACM International Conference on Web Search and Data Mining. New York: ACM, 2017: 781-789. 10.1145/3018661.3018699 | 
																													
																						| 5 | WU X W, CHEN H C, ZHAO J S, et al. Unbiased learning to rank in feeds recommendation[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 490-498. 10.1145/3437963.3441751 | 
																													
																						| 6 | SCHNABEL T, SWAMINATHAN A, SINGH A, et al. Recommendations as treatments: debiasing learning and evaluation[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 1670-1679. | 
																													
																						| 7 | 邓爱林,朱扬勇,施伯乐. 基于项目评分预测的协同过滤推荐算法 [J]. 软件学报, 2003, 14(9): 1621-1628. 10.1007/978-3-642-00958-7_8 | 
																													
																						|  | DENG A L, ZHU Y Y, SHI B L. A collaborative filtering recommendation algorithm based on item rating prediction[J]. Journal of Software, 2003, 14(9): 1621-1628. 10.1007/978-3-642-00958-7_8 | 
																													
																						| 8 | 张时俊,王永恒. 基于矩阵分解的个性化推荐系统研究[J]. 中文信息学报, 2017, 31(3):134-139, 169. 10.1109/wisa.2017.42 | 
																													
																						|  | ZHANG S J, WANG Y H. Personalized recommender system based on matrix factorization[J]. Journal of Chinese Information Processing, 2017, 31(3): 134-139, 169. 10.1109/wisa.2017.42 | 
																													
																						| 9 | CHEN J, LIAN D F, ZHENG K. Improving one-class collaborative filtering via ranking-based implicit regularizer[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 37-44. 10.1609/aaai.v33i01.330137 | 
																													
																						| 10 | SWAMINATHAN A, JOACHIMS T. Counterfactual risk minimization: learning from logged bandit feedback[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 814-823. 10.1145/2740908.2742564 | 
																													
																						| 11 | WANG X H, GOLBANDI N, BENDERSKY M, et al. Position bias estimation for unbiased learning to rank in personal search[C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 610-618. 10.1145/3159652.3159732 | 
																													
																						| 12 | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]// Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Arlington, VA: AUAI Press, 2009: 452-461. | 
																													
																						| 13 | HU Y F, KOREN Y, VOLINSKY C. Collaborative filtering for implicit feedback datasets[C]// Proceedings of the 8th IEEE International Conference on Data Mining. Piscataway: IEEE, 2008: 263-272. 10.1109/icdm.2008.22 | 
																													
																						| 14 | HE X N, ZHANG H W, KAN M Y, et al. Fast matrix factorization for online recommendation with implicit feedback[C]// Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2016: 549-558. 10.1145/2911451.2911489 | 
																													
																						| 15 | BONNER S, VASILE F. Causal embeddings for recommendation[C]// Proceedings of the 12th ACM Conference on Recommender Systems. New York: ACM, 2018: 104-112. 10.1145/3240323.3240360 | 
																													
																						| 16 | LIU D G, CHENG P X, DONG Z H, et al. A general knowledge distillation framework for counterfactual recommendation via uniform data[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 831-840. 10.1145/3397271.3401083 | 
																													
																						| 17 | ROSENBAUM P, RUBIN D B. The central role of the propensity score in observational studies for causal effects[J]. Biometrika, 1983, 70(1):41-55. 10.1093/biomet/70.1.41 | 
																													
																						| 18 | HU Z N, WANG Y, PENG Q, et al. Unbiased LambdaMART: an unbiased pairwise learning-to-rank algorithm[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2830-2836. 10.1145/3308558.3313447 | 
																													
																						| 19 | WANG X J, ZHANG R, SUN Y, et al. Combating selection biases in recommender systems with a few unbiased ratings[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 427-435. 10.1145/3437963.3441799 | 
																													
																						| 20 | SAITO Y, YAGINUMA S, NISHINO Y, et al. Unbiased recommender learning from missing-not-at-random implicit feedback[C]// Proceedings of the 13th ACM International Conference on Web Search and Data Mining. New York: ACM, 2020: 501-509. 10.1145/3336191.3371783 | 
																													
																						| 21 | ABDOLLAHPOURI H, BURKE R, MOBASHER B. Controlling popularity bias in learning-to-rank recommendation[C]// Proceedings of the 11th ACM Conference on Recommender Systems. New York: ACM, 2017: 42-46. 10.1145/3109859.3109912 | 
																													
																						| 22 | JOACHIMS T, SWAMINATHAN A. Counterfactual evaluation and learning for search, recommendation and ad placement[C]// Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2016: 1199-1201. 10.1145/2911451.2914803 | 
																													
																						| 23 | 印桂生,张亚楠,董红斌,等. 一种由长尾分布约束的推荐方法[J]. 计算机研究与发展, 2013, 50(9):1814-1824. 10.7544/issn1000-1239.2013.20130482 | 
																													
																						|  | YIN G S, ZHANG Y N, DONG H B, et al. A long tail distribution constrained recommendation method[J]. Journal of Computer Research and Development, 2013, 50(9):1814-1824. 10.7544/issn1000-1239.2013.20130482 | 
																													
																						| 24 | 秦婧,张青博,王斌. 关注长尾物品的推荐方法[J]. 计算机应用, 2020, 40(2): 454-458. 10.11772/j.issn.1001-9081.2019091665 | 
																													
																						|  | QIN J, ZHANG Q B, WANG B. Recommendation method with focus on long tail items[J]. Journal of Computer Applications, 2020, 40(2): 454-458. 10.11772/j.issn.1001-9081.2019091665 |