| 1 | WASSERMAN S, FAUST K. Social network analysis: methods and applications[J]. Proceedings of the Institute for System Programming of RAS, 1994, 26(1):439-456. 10.1017/cbo9780511815478 | 
																													
																						| 2 | GEHRKE J, GINSPARG P, KLEINBERG J. Overview of the 2003 KDD Cup[J]. ACM SIGKDD Explorations Newsletter, 2003, 5(2): 149-151. 10.1145/980972.980992 | 
																													
																						| 3 | PAVLOPOULOS G A, WEGENER A L, SCHNEIDER R. A survey of visualization tools for biological network analysis[J]. BioData Mining, 2008, 1: No.12. 10.1186/1756-0381-1-12 | 
																													
																						| 4 | TANG J, QU M, WANG M Z, et al. LINE: large-scale information network embedding[C]// Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2015: 1067-1077. 10.1145/2736277.2741093 | 
																													
																						| 5 | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710. 10.1145/2623330.2623732 | 
																													
																						| 6 | GROVER A, LESKOVEC J. node2vec: Scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864. 10.1145/2939672.2939754 | 
																													
																						| 7 | ZHOU L K, YANG Y, REN X, et al. Dynamic network embedding by modeling triadic closure process[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 571-578. | 
																													
																						| 8 | GOYAL P, KAMRA N, HE X R, et al. DynGEM: deep embedding method for dynamic graphs[EB/OL]. [2021-03-06].. | 
																													
																						| 9 | GOYAL P, CHHETRI S R, CANEDO A. dyngraph2vec: capturing network dynamics using dynamic graph representation learning[J]. Knowledge-Based Systems, 2020, 187: No.104816. 10.1016/j.knosys.2019.06.024 | 
																													
																						| 10 | SANKAR A, WU Y H, GOU L, et al. DySAT: deep neural representation learning on dynamic graphs via self-attention networks[C]// Proceedings of the 13th International Conference on Web Search and Data Mining. New York: ACM, 2020: 519-527. 10.1145/3336191.3371845 | 
																													
																						| 11 | BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]// Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic. Cambridge: MIT Press, 2001: 585-591. 10.7551/mitpress/1120.003.0080 | 
																													
																						| 12 | CAO S S, LU W, XU Q K. GraRep: learning graph representations with global structural information[C]// Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York: ACM, 2015: 891-900. 10.1145/2806416.2806512 | 
																													
																						| 13 | OU M D, CUI P, PEI J, et al. Asymmetric transitivity preserving graph embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1105-1114. 10.1145/2939672.2939751 | 
																													
																						| 14 | WANG D X, CUI P, ZHU W W. Structural deep network embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1225-1234. 10.1145/2939672.2939753 | 
																													
																						| 15 | CAO S S, LU W, XU Q K. Deep neural networks for learning graph representations[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016: 1145-1152. | 
																													
																						| 16 | OLAH C. Understanding LSTM networks[EB/OL]. (2015-08-27) [2021-03-06]., 2015. | 
																													
																						| 17 | KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. (2014-05-01) [2021-03-06].. 10.1561/9781680836233 | 
																													
																						| 18 | YANG Y M, WU Q M J, WANG Y N. Autoencoder with invertible functions for dimension reduction and image reconstruction[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(7): 1065-1079. 10.1109/tsmc.2016.2637279 | 
																													
																						| 19 | LIM K L, JIANG X D, YI C Y. Deep clustering with variational autoencoder[J]. IEEE Signal Processing Letters, 2020, 27: 231-235. 10.1109/lsp.2020.2965328 | 
																													
																						| 20 | BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL]. (2016-05-19) [2021-03-06].. 10.3115/v1/w14-4009 | 
																													
																						| 21 | CHO K, MERRIËNBOER B VAN, GU̇LÇEHRE Ç, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2014: 1724-1734. 10.3115/v1/d14-1179 | 
																													
																						| 22 | ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[EB/OL]. (2015-02-19) [2021-03-06].. 10.3115/v1/p15-1002 | 
																													
																						| 23 | TRIVEDI R, DAI H J, WANG Y C, et al. Know-evolve: deep temporal reasoning for dynamic knowledge graphs[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 3462-3471. | 
																													
																						| 24 | PANZARASA P, OPSAHL T, CARLEY K M. Patterns and dynamics of users’ behavior and interaction: network analysis of an online community[J]. Journal of the American Society for Information Science and Technology, 2009, 60(5): 911-932. 10.1002/asi.21015 | 
																													
																						| 25 | Inc Yelp. Yelp dataset[DS/OL]. [2021-02-17]. . | 
																													
																						| 26 | HARPER F M, KONSTAN J A. The MovieLens datasets: history and context[J]. ACM Transactions on Interactive Intelligent Systems, 2016, 5(4): No.19. 10.1145/2827872 | 
																													
																						| 27 | HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 1025-1035. 10.1145/3219819.3219890 | 
																													
																						| 28 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018-02-04) [2021-02-17].. | 
																													
																						| 29 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2021-02-17].. |