1 |
WASSERMAN S, FAUST K. Social network analysis: methods and applications[J]. Proceedings of the Institute for System Programming of RAS, 1994, 26(1):439-456. 10.1017/cbo9780511815478
|
2 |
GEHRKE J, GINSPARG P, KLEINBERG J. Overview of the 2003 KDD Cup[J]. ACM SIGKDD Explorations Newsletter, 2003, 5(2): 149-151. 10.1145/980972.980992
|
3 |
PAVLOPOULOS G A, WEGENER A L, SCHNEIDER R. A survey of visualization tools for biological network analysis[J]. BioData Mining, 2008, 1: No.12. 10.1186/1756-0381-1-12
|
4 |
TANG J, QU M, WANG M Z, et al. LINE: large-scale information network embedding[C]// Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2015: 1067-1077. 10.1145/2736277.2741093
|
5 |
PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710. 10.1145/2623330.2623732
|
6 |
GROVER A, LESKOVEC J. node2vec: Scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864. 10.1145/2939672.2939754
|
7 |
ZHOU L K, YANG Y, REN X, et al. Dynamic network embedding by modeling triadic closure process[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 571-578.
|
8 |
GOYAL P, KAMRA N, HE X R, et al. DynGEM: deep embedding method for dynamic graphs[EB/OL]. [2021-03-06]..
|
9 |
GOYAL P, CHHETRI S R, CANEDO A. dyngraph2vec: capturing network dynamics using dynamic graph representation learning[J]. Knowledge-Based Systems, 2020, 187: No.104816. 10.1016/j.knosys.2019.06.024
|
10 |
SANKAR A, WU Y H, GOU L, et al. DySAT: deep neural representation learning on dynamic graphs via self-attention networks[C]// Proceedings of the 13th International Conference on Web Search and Data Mining. New York: ACM, 2020: 519-527. 10.1145/3336191.3371845
|
11 |
BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]// Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic. Cambridge: MIT Press, 2001: 585-591. 10.7551/mitpress/1120.003.0080
|
12 |
CAO S S, LU W, XU Q K. GraRep: learning graph representations with global structural information[C]// Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York: ACM, 2015: 891-900. 10.1145/2806416.2806512
|
13 |
OU M D, CUI P, PEI J, et al. Asymmetric transitivity preserving graph embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1105-1114. 10.1145/2939672.2939751
|
14 |
WANG D X, CUI P, ZHU W W. Structural deep network embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1225-1234. 10.1145/2939672.2939753
|
15 |
CAO S S, LU W, XU Q K. Deep neural networks for learning graph representations[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016: 1145-1152.
|
16 |
OLAH C. Understanding LSTM networks[EB/OL]. (2015-08-27) [2021-03-06]., 2015.
|
17 |
KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. (2014-05-01) [2021-03-06].. 10.1561/9781680836233
|
18 |
YANG Y M, WU Q M J, WANG Y N. Autoencoder with invertible functions for dimension reduction and image reconstruction[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(7): 1065-1079. 10.1109/tsmc.2016.2637279
|
19 |
LIM K L, JIANG X D, YI C Y. Deep clustering with variational autoencoder[J]. IEEE Signal Processing Letters, 2020, 27: 231-235. 10.1109/lsp.2020.2965328
|
20 |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL]. (2016-05-19) [2021-03-06].. 10.3115/v1/w14-4009
|
21 |
CHO K, MERRIËNBOER B VAN, GU̇LÇEHRE Ç, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2014: 1724-1734. 10.3115/v1/d14-1179
|
22 |
ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[EB/OL]. (2015-02-19) [2021-03-06].. 10.3115/v1/p15-1002
|
23 |
TRIVEDI R, DAI H J, WANG Y C, et al. Know-evolve: deep temporal reasoning for dynamic knowledge graphs[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 3462-3471.
|
24 |
PANZARASA P, OPSAHL T, CARLEY K M. Patterns and dynamics of users’ behavior and interaction: network analysis of an online community[J]. Journal of the American Society for Information Science and Technology, 2009, 60(5): 911-932. 10.1002/asi.21015
|
25 |
Inc Yelp. Yelp dataset[DS/OL]. [2021-02-17]. .
|
26 |
HARPER F M, KONSTAN J A. The MovieLens datasets: history and context[J]. ACM Transactions on Interactive Intelligent Systems, 2016, 5(4): No.19. 10.1145/2827872
|
27 |
HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 1025-1035. 10.1145/3219819.3219890
|
28 |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018-02-04) [2021-02-17]..
|
29 |
KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2021-02-17]..
|