《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (4): 1011-1020.DOI: 10.11772/j.issn.1001-9081.2021071262
• CCF第36届中国计算机应用大会 (CCF NCCA 2021) •
王颖洁1, 朱久祺1, 汪祖民1, 白凤波2,3(), 弓箭3
收稿日期:
2021-07-16
修回日期:
2021-08-22
接受日期:
2021-08-25
发布日期:
2022-04-28
出版日期:
2022-04-10
通讯作者:
白凤波
作者简介:
王颖洁(1977—),女,黑龙江齐齐哈尔人,副教授,博士,CCF会员,主要研究方向:人工智能、软件工程基金资助:
Yingjie WANG1, Jiuqi ZHU1, Zumin WANG1, Fengbo BAI2,3(), Jian GONG3
Received:
2021-07-16
Revised:
2021-08-22
Accepted:
2021-08-25
Online:
2022-04-28
Published:
2022-04-10
Contact:
Fengbo BAI
About author:
WANG Yingjie, born in 1977, Ph.D., associate professor. Her research interests include artificial intelligence, software engineering.Supported by:
摘要:
文本情感分析已经逐渐成为自然语言处理(NLP)的重要内容,并在系统推荐、用户情感信息获取,为政府、企业提供舆情参考等领域越来越占据重要地位。通过文献调研的方式,对情感分析领域的方法进行对比和综述。首先,从时间、方法等维度对情感分析的方法进行文献调研;然后,对情感分析的主要方法、应用场景进行归纳总结和对比;最后,在此基础上分析每种方法的优缺点。根据分析结果可以知道,在面对不同的任务场景,主要有三种情感分析的方法:基于情感字典的情感分析法、基于机器学习的情感分析法和基于深度学习的情感分析法,基于多策略混合的方法成为改进的趋势。文献调研表明,文本情感分析的技术方法还有改进的空间,在电子商务、心理治疗、舆情监控方面有较大市场和发展前景。
中图分类号:
王颖洁, 朱久祺, 汪祖民, 白凤波, 弓箭. 自然语言处理在文本情感分析领域应用综述[J]. 计算机应用, 2022, 42(4): 1011-1020.
Yingjie WANG, Jiuqi ZHU, Zumin WANG, Fengbo BAI, Jian GONG. Review of applications of natural language processing in text sentiment analysis[J]. Journal of Computer Applications, 2022, 42(4): 1011-1020.
方法 | 准确率 | 召回率 | F1值 |
---|---|---|---|
SVM多特征融合 | 82.40 | 81.91 | 82.10 |
SVM | 88.20 | 89.00 | 88.00 |
FV-SA-SVM | 92.90 | 93.00 | 89.00 |
SA-SVM | 89.40 | 90.00 | 89.00 |
NB | 86.60 | 87.00 | 87.00 |
Logistic回归 | 86.90 | 85.00 | 86.00 |
KNN | 87.00 | 87.00 | 85.00 |
MNB | 88.50 | 83.33 | 87.87 |
BNB | 87.50 | 86.33 | 87.35 |
ME | 60.67 | 84.67 | 68.28 |
决策树 | 80.17 | 82.33 | 80.58 |
表1 基于机器学习的情感分析的实验结果 (%)
Tab. 1 Experimental results of sentiment analysis based on machine learning
方法 | 准确率 | 召回率 | F1值 |
---|---|---|---|
SVM多特征融合 | 82.40 | 81.91 | 82.10 |
SVM | 88.20 | 89.00 | 88.00 |
FV-SA-SVM | 92.90 | 93.00 | 89.00 |
SA-SVM | 89.40 | 90.00 | 89.00 |
NB | 86.60 | 87.00 | 87.00 |
Logistic回归 | 86.90 | 85.00 | 86.00 |
KNN | 87.00 | 87.00 | 85.00 |
MNB | 88.50 | 83.33 | 87.87 |
BNB | 87.50 | 86.33 | 87.35 |
ME | 60.67 | 84.67 | 68.28 |
决策树 | 80.17 | 82.33 | 80.58 |
模型 | 数据集 | 准确率 | 召回率 | F1值 | 模型 | 数据集 | 准确率 | 召回率 | F1值 |
---|---|---|---|---|---|---|---|---|---|
CNN | NLPCC2014 | 72.15 | 74.24 | 73.18 | BiE-LSTM | 82.20 | 88.10 | 85.00 | |
LSTM | NLPCC2014 | 75.84 | 75.02 | 75.43 | MATT-LSTM | 83.10 | 87.20 | 85.10 | |
MSCNN | NLPCC2014 | 73.98 | 72.74 | 73.35 | SentiBERT | 71.50 | 78.69 | 74.10 | |
BiLSTM | NLPCC2014 | 76.12 | 74.52 | 75.31 | BERT | 68.86 | 73.00 | 70.78 | |
SATT-BiLSTM | NLPCC2014 | 76.23 | 74.84 | 75.53 | BERT+Linear | 71.42 | 75.25 | 73.22 | |
Bi-SAN | NLPCC2014 | 75.66 | 79.23 | 77.40 | BERT-DK | 71.88 | 74.07 | 72.88 | |
EBi-SAN | NLPCC2014 | 77.89 | 79.08 | 78.48 | DomBERT | 72.17 | 74.96 | 73.45 | |
RBM | NLPCC2014 | 71.30 | 87.01 | 78.41 | Word2vec-MCNN | CN-o2o | 88.10 | 90.97 | 90.03 |
T-LSTM | 70.80 | 82.51 | 76.20 | Glove-MCNN | CN-o2o | 89.47 | 91.66 | 90.55 | |
E-LSTM | 81.60 | 82.50 | 82.00 | ELMO-MCNN | CN-o2o | 93.04 | 95.49 | 94.25 | |
ATT-LSTM | 82.51 | 86.50 | 84.62 | BERT-MCNN | CN-o2o | 95.30 | 98.33 | 96.52 |
表2 基于深度学习的情感分析实验结果 (%)
Tab. 2 Experimental results of sentiment analysis based on deep learning
模型 | 数据集 | 准确率 | 召回率 | F1值 | 模型 | 数据集 | 准确率 | 召回率 | F1值 |
---|---|---|---|---|---|---|---|---|---|
CNN | NLPCC2014 | 72.15 | 74.24 | 73.18 | BiE-LSTM | 82.20 | 88.10 | 85.00 | |
LSTM | NLPCC2014 | 75.84 | 75.02 | 75.43 | MATT-LSTM | 83.10 | 87.20 | 85.10 | |
MSCNN | NLPCC2014 | 73.98 | 72.74 | 73.35 | SentiBERT | 71.50 | 78.69 | 74.10 | |
BiLSTM | NLPCC2014 | 76.12 | 74.52 | 75.31 | BERT | 68.86 | 73.00 | 70.78 | |
SATT-BiLSTM | NLPCC2014 | 76.23 | 74.84 | 75.53 | BERT+Linear | 71.42 | 75.25 | 73.22 | |
Bi-SAN | NLPCC2014 | 75.66 | 79.23 | 77.40 | BERT-DK | 71.88 | 74.07 | 72.88 | |
EBi-SAN | NLPCC2014 | 77.89 | 79.08 | 78.48 | DomBERT | 72.17 | 74.96 | 73.45 | |
RBM | NLPCC2014 | 71.30 | 87.01 | 78.41 | Word2vec-MCNN | CN-o2o | 88.10 | 90.97 | 90.03 |
T-LSTM | 70.80 | 82.51 | 76.20 | Glove-MCNN | CN-o2o | 89.47 | 91.66 | 90.55 | |
E-LSTM | 81.60 | 82.50 | 82.00 | ELMO-MCNN | CN-o2o | 93.04 | 95.49 | 94.25 | |
ATT-LSTM | 82.51 | 86.50 | 84.62 | BERT-MCNN | CN-o2o | 95.30 | 98.33 | 96.52 |
1 | 敖盛,徐岚,敖清文.NLP中文分词技术在桥梁报告数据处理中的应用[J].交通世界,2020(17):3-5. |
AO S, XU L, AO Q W. Application of NLP Chinese word segmentation technology in bridge report data processing[J]. Traffic World, 2020(17): 3-5. | |
2 | 郑贞,王华丹,郝丽华.术语学视角下的美军军语词典研究[J].中国科技术语,2021,23(3):33-41. (ZHENG Z, WANG H D, HAO L H. Research on US military dictionary from the perspective of terminology [J]. Chinese Science and Technology Terminology:2021,23(3): 33-41.). 10.12339/j.issn.1673-8578.2021.03.005 |
3 | 周知,王春迎,朱佳丽.基于超短评论的图书领域情感词典构建研究[J].情报理论与实践, 2021, 44(9): 183-189, 197. |
ZHOU Z, WANG C Y, ZHU J L. Research on the construction of emotional dictionaries in the book domain based on ultra-short reviews[J]. Information Theory and Practice, 2021, 44(9): 183-189, 197. | |
4 | 陈基.命名实体识别综述[J].现代计算机(专业版),2016(3):24-26. |
CHEN J. Overview of named entity recognition[J]. Modern Computer (Professional Edition), 2016(3): 24-26. | |
5 | 冯静,李正武,张登云,等.基于隐马尔可夫模型的桥梁检测文本命名实体识别[J].交通世界,2020(8):32-33. |
FENG J, LI Z W, ZHANG D Y, et al. Named entity recognition of bridge detection text based on hidden Markov model[J]. Traffic World, 2020(8): 32-33. | |
6 | 邵诗韵,周宇,杨蕾,等.基于条件随机场的电力工程标书文本实体识别方法[J].计算机与现代化,2020(12):72-77. 10.3969/j.issn.1006-2475.2020.12.013 |
SHAO S Y, ZHOU Y, YANG L, et al. Power engineering bid text entity recognition method based on conditional random field[J]. Computer and Modernization, 2020(12): 72-77. 10.3969/j.issn.1006-2475.2020.12.013 | |
7 | 扈应,陈艳平,黄瑞章,等. 结合CRF的边界组合生物医学命名实体识别[J].计算机应用研究,2021,38(7):2025-2031. |
HU Y, CHEN Y P, HUANG R Z, et al. Boundary combinatorial biomedical named entity recognition combined with CRF[J]. Application Research of Computers, 2021,38(7):2025-2031. | |
8 | 冯艳红, 于红, 孙庚, 等. 基于BLSTM的命名实体识别方法[J]. 计算机科学, 2018, 45(2): 261-268. 10.11896/j.issn.1002-137X.2018.02.045 |
FENG Y H, YU H, SUN G, et al. Named entity recognition method based on BLSTM[J]. Computer Science, 2018, 45(2): 261-268. 10.11896/j.issn.1002-137X.2018.02.045 | |
9 | 罗熹,夏先运,安莹,等.结合多头自注意力机制与BiLSTM-CRF的中文临床实体识别[J].湖南大学学报(自然科学版),2021,48(4):45-55. |
LUO X, XIA X Y, AN Y, et al. Chinese clinical entity recognition combining multi-head self-attention mechanism and BiLSTM-CRF[J]. Journal of Hunan University (Natural Science Edition), 2021, 48(4): 45-55. | |
10 | 郑洪浩,于洪涛,李邵梅.基于改进的Transformer编码器的中文命名实体识别[J].网络与信息安全学报, 2021,7(5): 105-112. |
ZHENG H H, YU H T, LI S M. Chinese named entity recognition based on improved Transformer encoder[J]. Journal of Network and Information Security, 2021,7(5): 105-112. | |
11 | 董哲,邵若琦,陈玉梁,等.基于BERT和对抗训练的食品领域命名实体识别[J].计算机科学,2021,48(5):247-253. 10.11896/jsjkx.200800181 |
DONG Z, SHAO R Q, CHEN Y L, et al. Named entity recognition in the food field based on BERT and adversarial training [J]. Computer Science, 2021, 48(5): 247-253. 10.11896/jsjkx.200800181 | |
12 | 王子牛, 姜猛, 高建瓴,等. 基于BERT的中文命名实体识别方法[J]. 计算机科学, 2019, 46(S2): 138-142 . |
WANG Z N, JIANG M, GAO J L,et al. Chinese named entity recognition method based on BERT[J]. Computer Science, 2019, 46(S2): 138-142. | |
13 | CYNTHIA W. Using the revised dictionary of affect in language to quantify the emotional undertones of samples of natural language[J]. Psychological Reports, 2009, 105(2): 509-521. 10.2466/pr0.105.2.509-521 |
14 | 钟佳娃,刘巍,王思丽, 等.文本情感分析方法及应用综述[J].数据分析与知识发现,2021,5(6):1-13. |
ZHONG J W, LIU W, WANG S L, et al. Summary of text sentiment analysis methods and applications[J]. Data Analysis and Knowledge Discovery, 2021, 5(6):1-13. | |
15 | 栗雨晴, 礼欣, 韩煦,等.基于双语词典的微博多类情感分析方法[J].电子学报,2016,44(9):2068-2073. 10.3969/j.issn.0372-2112.2016.09.007 |
LI Y Q, LI X, HAN X, et al. Multi-sentiment analysis method of Weibo based on bilingual dictionary [J]. Acta Electronics Sinica, 2016, 44(9): 2068-2073. 10.3969/j.issn.0372-2112.2016.09.007 | |
16 | 赵妍妍,秦兵,石秋慧,等.大规模情感词典的构建及其在情感分类中的应用[J].中文信息学报,2017,31(2):187-193. |
ZHAO Y Y, QIN B, SHI Q H, et al. Construction of a large-scale sentiment dictionary and its application in sentiment classification[J]. Journal of Chinese Information Processing, 2017, 31(2): 187-193. | |
17 | 万岩,杜振中.融合情感词典和语义规则的微博评论细粒度情感分析[J].情报探索,2020(11):34-41. 10.3969/j.issn.1005-8095.2020.11.005 |
WAN Y, DU Z Z. Fine-grained sentiment analysis of Weibo comments combined with sentiment dictionary and semantic rules[J]. Information Research, 2020(11): 34-41. 10.3969/j.issn.1005-8095.2020.11.005 | |
18 | 邱全磊,崔宗敏,喻静. 基于表情和语气的情感词典用于弹幕情感分析[J].计算机技术与发展,2020,30(8):178-182. 10.3969/j.issn.1673-629X.2020.08.031 |
QIU Q L, CUI Z M, YU J. A sentiment dictionary based on facial expression and tone is used for bullet screen sentiment analysis[J]. Computer Technology and Development, 2020, 30(8):178-182. 10.3969/j.issn.1673-629X.2020.08.031 | |
19 | 高华玲,张晶.基于情感词典的酒店评论情感分析与可视化[J].软件,2021,42(1):45-47,66. 10.3969/j.issn.1003-6970.2021.01.014 |
GAO H L, ZHANG J. Sentiment analysis and visualization of hotel reviews based on sentiment dictionary [J]. Computer Engineering & Software, 2021, 42(1): 45-47,66. 10.3969/j.issn.1003-6970.2021.01.014 | |
20 | ASGHAR M Z, KHAN A, AHMAD S, et al. Lexicon-enhanced sentiment analysis framework using rule-based classification scheme[J]. PLoS One, 2017, 12(2): e0171649. 10.1371/journal.pone.0171649 |
21 | CAI Y, YANG K, HUANG D P, et al. A hybrid model for opinion mining based on domain sentiment dictionary[J]. International Journal of Machine Learning and Cybernetics, 2019, 10: 2131-2142. 10.1007/s13042-017-0757-6 |
22 | 吴杰胜. 基于多部情感词典和深度学习的中文微博情感分析研究[D]. 淮南: 安徽理工大学,2020:22-32. |
WU J S. Research on sentiment analysis of Chinese Weibo based on multiple sentiment dictionaries and deep learning [D]. Huainan: Anhui University of Science and Technology, 2020:22-32. | |
23 | 신동혁,남지순,남지순.정서 분석을 위한 한국 정서 사전 DecoSelex 구축[J]. 인문학일반, 2016, 11(28): 75-111. (SHEN D H, ZHAO D X, NAN Z S. Building the Korean sentiment lexicon DecoSelex for sentiment analysis[J]. Journal of Korealex, 2016, 11(28): 75-111. 10.33641/kolex.2016..28.75 |
24 | THIEN K T, THI P T. A hybrid approach for building a Vietnamese sentiment dictionary[J]. Journal of Intelligent & Fuzzy Systems, 2018, 35(1): 1-12. 10.3233/jifs-172053 |
25 | WU L, MORESTATTER F, LIU H, et al. SlangSD: building, expanding and using a sentiment dictionary of slang words for short-text sentiment classification[J]. Language Resources and Evaluation, 2018, 52: 839-852. 10.1007/s10579-018-9416-0 |
26 | 季鹏飞,王先超,张顺香. 基于共现概率训练的情感词典的扩充[J].阜阳师范学院学报(自然科学版),2019,36(4):49-53. |
JI P F, WANG X C, ZHANG S X. Expansion of the emotional dictionary based on co-occurrence probability training[J]. Journal of Fuyang Teachers College (Natural Science Edition), 2019, 36(4): 49-53. | |
27 | 李永帅. 基于双向LSTM的动态情感词典构建方法研究及文本情感分析[D].郑州: 郑州大学,2019:20-32. |
LI Y S. Research on construction method of dynamic sentiment dictionary based on two-way LSTM and text sentiment analysis [D]. Zhengzhou: Zhengzhou University, 2019:20-32. | |
28 | ZHANG S X, WEI Z L, WANG Y, et al. Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary[J]. Future Generation Computer Systems, 2018, 81: 395-403. 10.1016/j.future.2017.09.048 |
29 | 郑赛乾. 基于Word2vec的客服情感词典自动构建子系统的设计与实现[D].北京: 北京邮电大学,2020:7-18. (ZHENG S Q. Design and implementation of the automatic construction subsystem of customer service emotional dictionary based on Word2Vec[D]. Beijing: Beijing University of Posts and Telecommunications, 2020:7-18.) |
30 | BRAVO-MARQUES F, KHANCHANDANI A, PFAHRINGER B. Incremental word vectors for time-evolving sentiment lexicon induction[J]. Cognitive Computation, 2021,14: 425-441. 10.1007/s12559-021-09831-y |
31 | 汪海燕,黎建辉,杨风雷.支持向量机理论及算法研究综述[J].计算机应用研究,2014,31(5):1281-1286. |
WANG H Y, LI J H, YANG F L. Support vector machine theory and algorithm research review [J]. Application Research of Computers, 2014, 31(5): 1281-1286. | |
32 | 肖铮.常用的三种分类算法及其比较分析[J].重庆科技学院学报(自然科学版),2020,22(5):101-106. |
XIAO Z. Three commonly used classification algorithms and their comparative analysis [J]. Journal of Chongqing University of Science and Technology (Natural Science Edition), 2020, 22(5): 101-106. | |
33 | 李静梅,孙丽华,张巧荣,等.一种文本处理中的朴素贝叶斯分类器[J].哈尔滨工程大学学报,2003(1):71-74. 10.3969/j.issn.1006-7043.2003.01.017 |
LI J M, SUN L H, ZHANG Q R, et al. A naive Bayes classifier in text processing[J]. Journal of Harbin Engineering University, 2003(1): 71-74. 10.3969/j.issn.1006-7043.2003.01.017 | |
34 | 彭子豪,谭欣.并行化改进的朴素贝叶斯算法在中文文本分类上的应用[J].科学技术创新,2020, (26):176-178. 10.3969/j.issn.1673-1328.2020.26.078 |
PENG Z H, TAN X. Application of parallelized improved naive bayes algorithm in Chinese text classification[J]. Science and Technology Innovation, 2020, (26): 176-178. 10.3969/j.issn.1673-1328.2020.26.078 | |
35 | 杨爽,陈芬.基于SVM多特征融合的微博情感多级分类研究[J].数据分析与知识发现,2017,1(2):73-79. |
YANG S, CHEN F. Multi-level classification of Weibo sentiment based on SVM multi-feature fusion [J]. Data Analysis and Knowledge Discovery, 2017, 1(2): 73-79. | |
36 | 杨妥,李万龙,郑山红.融合情感分析与SVM_LSTM模型的股票指数预测[J].软件导刊,2020,19(8):14-18. |
YANG T, LI W L, ZHENG S H. Stock index prediction based on sentiment analysis and SVM_LSTM model[J]. Software Guide, 2020, 19(8): 14-18. | |
37 | 孙翌博,濮泽堃,徐玉华,等.应用SD-LS-SVM算法的评论情感分析模型[J].软件导刊,2021,20(4):43-48. |
SUN Y B, PU Z K, XU Y H, et al. Comment sentiment analysis model using SD-LS-SVM algorithm [J]. Software Guide, 2021, 20(4): 43-48. | |
38 | 张成博. 基于FV-SA-SVM的电影评论情感分析[D].上海: 上海师范大学,2020:35-39. |
ZHANG C B. Sentiment analysis of movie reviews based on FV-SA-SVM [D]. Shanghai: Shanghai Normal University, 2020:35-39. | |
39 | HASAN A, MOIN S, KARIM A, et al. Machine learning-based sentiment analysis for twitter accounts[J]. Mathematical and Computational Applications, 2018, 23(1): 11. 10.3390/mca23010011 |
40 | BAID P, GUPTA A, CHAPLOT N. Sentiment analysis of movie reviews using machine learning techniques[J]. International Journal of Computer Applications, 2017, 179(7): 45-49. 10.5120/ijca2017916005 |
41 | AHMAD M, AFTAB S, BASHIR S, et al. SVM optimization for sentiment analysis[J]. International Journal Advanced Computer Science and Applications, 2018, 9(4): 393-398. 10.14569/ijacsa.2018.090455 |
42 | MATHAPATI S, NAFEESA A, MANJULA S H, et al. OTAWE-Optimized topic-adaptive word expansion for cross domain sentiment classification on tweets[M]// Advances in Machine Learning and Data Science. Singapore: Springer, 2018,705: 213-224. 10.1007/978-981-10-8569-7_23 |
43 | BIRJALI M, BENI-HSSANE A, ERRITALI M. Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks[J]. Procedia Computer Science, 2017, 113: 65-72. 10.1016/j.procs.2017.08.290 |
44 | 胡家珩,岑咏华,吴承尧.基于深度学习的领域情感词典自动构建——以金融领域为例[J].数据分析与知识发现,2018,2(10):95-102. |
HU J H, CEN Y H, WU C Y. Automatic construction of domain sentiment dictionary based on deep learning—take the financial field as an example[J]. Data Analysis and Knowledge Discovery, 2018, 2(10): 95-102. | |
45 | 赵天锐,刘晨阳.基于深度学习的韩国语影评情感词典构建[J].信息技术与信息化,2021(1):250-253. 10.3969/j.issn.1672-9528.2021.01.077 |
ZHAO T R, LIU C Y. Construction of Korean film critics sentiment dictionary based on deep learning [J]. Information Technology and Informatization, 2021(1): 250-253. 10.3969/j.issn.1672-9528.2021.01.077 | |
46 | DWIVEDI R K, AGGARWAL M, KESHARI S K, et al. Sentiment analysis and feature extraction using rule-based model (RBM)[C]// Proceedings of the 2019 International Conference on Innovative Computing and Communications. Cham: Springer, 2019: 57-63. 10.1007/978-981-13-2354-6_7 |
47 | 曹宇, 李天瑞, 贾真, 等. BGRU: 中文文本情感分析的新方法[J]. 计算机科学与探索, 2019, 13(6): 973-981. |
CAO Y, LI T R, JIA Z, et al. BGRU: a new method of Chinese text sentiment analysis[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(6): 973-981. | |
48 | CAN E F, EZEN-CAN A, CAN F. Multilingual sentiment analysis: an RNN-based framework for limited data[EB/OL].[2018-06-08]. . 10.18653/v1/s18-1023 |
49 | 潘红丽.基于RNN弱监督网络的英语语义分析技术研究[J].电子设计工程,2021,29(15):97-101. |
PAN H L. Research on English semantic analysis technology based on RNN weakly supervised network[J]. Electronic Design Engineering,2021,29(15):97-101. | |
50 | WANG Y Q, HUANG M L, ZHU X Y, et al. Attention-based LSTM for aspect-level sentiment classification[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2016: 606-615. 10.18653/v1/d16-1058 |
51 | GOPALAKRISHNAN K, SALEM F M. Sentiment analysis using simplified long short-term memory recurrent neural networks[EB/OL].[2020-05-08]. . |
52 | CHEN Y X, YUAN J B, YOU Q Z, et al. Twitter sentiment analysis via bi-sense emoji embedding and attention-based LSTM[C]// Proceedings of the 26th ACM international conference on Multimedia. New York: ACM, 2018: 117-125. 10.1145/3240508.3240533 |
53 | WEI J Y, LIAO J, YANG Z F, et al. BiLSTM with multi-polarity orthogonal attention for implicit sentiment analysis[J]. Neurocomputing, 2020, 383: 165-173. 10.1016/j.neucom.2019.11.054 |
54 | YADAV R K, JIAO L, GOODWIN M, et al. Positionless aspect based sentiment analysis using attention mechanism[J]. Knowledge-Based Systems, 2021, 226: 107136. 10.1016/j.knosys.2021.107136 |
55 | BAZIOTIS C, PELEKIS N, DOULKERIDIS C, et al. DataStories at SemEval-2017 task 4: deep LSTM with attention for message-level and topic-based sentiment analysis[C]// Proceedings of the 11th International Workshop on Semantic Evaluation. Stroudsburg, PA: Association for Computational Linguistics 2017: 747-754. 10.18653/v1/s17-2126 |
56 | LIU Q, ZHANG H B, ZENG Y F, et al. Content attention model for aspect based sentiment analysis[C]// Proceedings of the 2018 World Wide Web Conference. 2018: 1023-1032. 10.1145/3178876.3186001 |
57 | CHEN P, SUN Z Q, BING L D, et al. Recurrent attention network on memory for aspect sentiment analysis[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics 2017: 452-461. 10.18653/v1/d17-1047 |
58 | 梁斌, 刘全, 徐进, 等. 基于多注意力卷积神经网络的特定目标情感分析[J]. 计算机研究与发展, 2017,54(8): 1724-1735. 10.7544/issn1000-1239.2017.20170178 |
LIANG B, LIU Q, XU J, et al. Aspect-based sentiment analysis based on multi-attention CNN[J]. Journal of Computer Research and Development, 2017, 54(8): 1724-1735. 10.7544/issn1000-1239.2017.20170178 | |
59 | SANGEETHA K, PRABHA D. Sentiment analysis of student feedback using multi-head attention fusion model of word and context embedding for LSTM[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(6): 4117-4126. 10.1007/s12652-020-01791-9 |
60 | BASIRI M E, NEMATI S, ABDAR M, et al. ABCDM: an attention-based bidirectional CNN-RNN deep model for sentiment analysis[J]. Future Generation Computer Systems, 2021, 115: 279-294. 10.1016/j.future.2020.08.005 |
61 | REHMAN A U, MALIK A K, RAZA B, et al. A hybrid CNN-LSTM model for improving accuracy of movie reviews sentiment analysis[J]. Multimedia Tools and Applications, 2019, 78(18): 26597-26613. 10.1007/s11042-019-07788-7 |
62 | 杜永萍,赵晓铮,裴兵兵.基于CNN-LSTM模型的短文本情感分类[J].北京工业大学学报,2019,45(7):662-670. 10.11936/bjutxb2017120035 |
DU Y P, ZHAO X Z, PEI B B, Short text sentiment classification based on CNN-LSTM model[J]. Journal of Beijing University of Technology, 2019, 45(7): 662-670. 10.11936/bjutxb2017120035 | |
63 | MINAEE S, AZIMI E, ABDOLRASHIDI A A. Deep-sentiment: sentiment analysis using ensemble of CNN and Bi-LSTM models [EB/OL ].[2019-04-08]. . |
64 | LI Y Q, ZHANG K, WANG J Y, et al. A cognitive brain model for multimodal sentiment analysis based on attention neural networks[J]. Neurocomputing, 2021, 430: 159-173. 10.1016/j.neucom.2020.10.021 |
65 | 黄山成,韩东红,乔百友, 等.基于ERNIE2.0-BiLSTM-Attention的隐式情感分析方法[J].小型微型计算机系统, 2021, 42(12): 2485-2489. |
HUANG S C, HAN D H, QIAO B Y, et al. Implicit sentiment analysis method based on ERNIE2.0-BiLSTM-Attention [J]. Journal of Cineses Computer Systems, 2021, 42(12):2485-2489. | |
66 | 徐超,叶宁,徐康, 等.融合MAML与BiLSTM的微博负面情感多分类方法[J/OL].计算机工程与应用:1-11[2021-01-26]. ,. 10.3778/j.issn.1002-8331.2009-0337 |
YE N, XU K, et al. Weibo negative sentiment multi-classification method integrating MAML and BiLSTM[J/OL]. Computer Engineering and Applications: 1-11[2021-01-26]. . 10.3778/j.issn.1002-8331.2009-0337 | |
67 | 程艳,尧磊波,张光河,等.基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析[J].计算机研究与发展,2020,57(12):2583-2595. 10.7544/issn1000-1239.2020.20190854 |
CHENG Y, YAO L B, ZHANG G H, et al. Multi-channel CNN and BiGRU text sentiment orientation analysis based on attention mechanism[J]. Computer Research and Development, 2020, 57(12): 2583-2595. 10.7544/issn1000-1239.2020.20190854 | |
68 | 李卫疆,漆芳.基于多通道双向长短期记忆网络的情感分析[J].中文信息学报,2019,33(12):119-128. 10.3969/j.issn.1003-0077.2019.12.015 |
LI W J, QI F. Sentiment analysis based on multi-channel two-way long and short term memory network[J]. Journal of Chinese Information Processing, 2019, 33(12): 119-128. 10.3969/j.issn.1003-0077.2019.12.015 | |
69 | WANG J, YU L C, LAI K R, et al. Tree-structured regional CNN-LSTM model for dimensional sentiment analysis[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 28: 581-591. 10.1109/taslp.2019.2959251 |
70 | 赵亚欧,张家重,李贻斌, 等.基于ELMo和Transformer混合模型的情感分析[J].中文信息学报,2021,35(3):115-124. 10.3969/j.issn.1003-0077.2021.03.012 |
ZHAO Y O, ZHANG J C, LI Y B, et al.Sentiment analysis based on ELMo and Transformer hybrid model[J]. Journal of Chinese Information Processing, 2021, 35(3): 115-124. 10.3969/j.issn.1003-0077.2021.03.012 | |
71 | 李铮,陈莉,张爽.基于ELMo和Bi-SAN的中文文本情感分析[J].计算机应用研究,2021,38(8):2303-2307. |
LI Z, CHEN L, ZHANG S. Chinese text sentiment analysis based on ELMo and Bi-SAN [J/OL]. Application Research of Computers,2021,38(8):2303-2307. | |
72 | 胡任远,刘建华,卜冠南,等. 融合BERT的多层次语义协同模型情感分析研究[J].计算机工程与应用,2021,57(13):176-184. |
HU R Y, LIU J H, BU G N, et al. Research on sentiment analysis of multi-level semantic collaboration model fusion BERT[J]. Computer Engineering and Applications, 2021, 57(13): 176-184. | |
73 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Stroudsburg, PA: Association for Computational Linguistics, 2019: 4171-4186. 10.18653/v1/n19-1423 |
74 | XU H, LIU B, SHU L, et al. DomBERT: domain-oriented language model for aspect-based sentiment analysis[C]// Proceedings of the 2020 Findings of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 1725-1731. 10.18653/v1/2020.findings-emnlp.156 |
75 | SUN C, HUANG L, QIU X. Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Stroudsburg, PA: Association for Computational Linguistics, 2019: 380-385. |
76 | YIN D, MENG T, CHANG K W. SentiBERT: a transferable transformer-based architecture for compositional sentiment semantics[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020: 3695-3706. 10.18653/v1/2020.acl-main.341 |
[1] | 危德健, 王文明, 王全玉, 任好盼, 高彦彦, 王志. 改进的基于锚点的三维手部姿态估计网络[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 953-959. |
[2] | 陈露, 张晓霞, 于洪. 基于先验知识的非负矩阵半可解释三因子分解算法[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 671-675. |
[3] | 于婉莹, 梁美玉, 王笑笑, 陈徵, 曹晓雯. 基于深度注意力网络的课堂教学视频中学生表情识别与智能教学评估[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 743-749. |
[4] | 李讷, 徐光柱, 雷帮军, 马国亮, 石勇涛. 交通道路行驶车辆车标识别算法[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 810-817. |
[5] | 许仁杰, 刘宝弟, 张凯, 刘伟锋. 基于贝叶斯权函数的模型无关元学习算法[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 708-712. |
[6] | 陈亭秀, 尹建芹. 基于关键帧筛选网络的视听联合动作识别[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 731-735. |
[7] | 孙邱杰, 梁景贵, 李思. 基于BART噪声器的中文语法纠错模型[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 860-866. |
[8] | 刘海杨, 孟令航, 林仲航, 谷源涛. 基于轨迹点聚类的航路发现方法[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 890-894. |
[9] | 陈薪羽, 刘明哲, 任俊, 汤影. 基于多列卷积神经网络的参数异步更新算法[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 395-403. |
[10] | 李俊伯, 秦品乐, 曾建潮, 李萌. 基于超分辨率网络的CT三维重建算法[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 584-591. |
[11] | 刘羽茜, 刘玉奇, 张宗霖, 卫志华, 苗冉. 注入注意力机制的深度特征融合新闻推荐模型[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 426-432. |
[12] | 曹建荣, 朱亚琴, 张玉婷, 吕俊杰, 杨红娟. 基于关节点特征的跌倒检测算法[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 622-630. |
[13] | 谢鑫, 张贤勇, 王旋晔, 唐鹏飞. 变精度邻域等价粒的邻域决策树构造算法[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 382-388. |
[14] | 吴洁, 张师天, 谢海滨, 杨光. 基于多影像中心磁共振成像数据的半监督膝盖异常分类[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 316-324. |
[15] | 马敬奇, 雷欢, 陈敏翼. 基于AlphaPose优化模型的老人跌倒行为检测算法[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 294-301. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||