| 1 | SEBAA A, NOUICER A, TARI A. Impact of technology evolution on the materialised views: current issues and future trends[J]. International Journal of Business Information Systems, 2019, 30(4): 427-462.  10.1504/ijbis.2019.099305 | 
																													
																						| 2 | PHANI A, TEKUR C, KRISHNA R K N SAI. Commit time materialized view maintenance for bulk load operations in Teradata[C]// Proceedings of the 2019 IEEE International Conference on Electrical, Computer and Communication Technologies. Piscataway: IEEE, 2019: 1-5.  10.1109/icecct.2019.8869100 | 
																													
																						| 3 | RANGARI A A, RAIPURKAR A R. Materialized view based data warehouse optimization[J]. Journal of Engineering and Applied Sciences, 2017, 12(12SI): 9436-9439. | 
																													
																						| 4 | 景苌弘,刘文洁,高锦涛,等. 面向分布式数据库的HTAP研究与实现[J]. 西北工业大学学报, 2021, 39(2): 430-438.  10.1051/jnwpu/20213920430 | 
																													
																						|  | JING C H, LIU W J, GAO J T, et al. Research and implementation of HTAP for distributed database[J]. Journal of Northwestern Polytechnical University, 2021, 39(2): 430-438.  10.1051/jnwpu/20213920430 | 
																													
																						| 5 | DUAN H C, HU H Q, QIAN W N, et al. Incremental join view maintenance on distributed log-structured storage[J]. Frontiers of Computer Science, 2021, 15(4): No.154607.  10.1007/s11704-020-9310-y | 
																													
																						| 6 | 付岩,冯径,钱越英. 面向大数据的物化视图选择算法[J]. 计算机应用, 2017, 37(S1): 250-254. | 
																													
																						|  | FU Y, FENG J, QIAN Y Y. Materialized view selection algorithms for big data[J]. Journal of Computer Applications, 2017, 37(S1): 250-254. | 
																													
																						| 7 | VINH N T Q, HAO D T, HANG P D T, et al. A solution for synchronous incremental maintenance of materialized views based on SQL recursive query[J]. Eastern-European Journal of Enterprise Technologies, 2019, 5(2): 6-17.  10.15587/1729-4061.2019.180226 | 
																													
																						| 8 | 蔡磊,朱燕超,郭庆兴,等. 面向区块链的高效物化视图维护和可信查询[J]. 软件学报, 2020, 31(3): 680-694. | 
																													
																						|  | CAI L, ZHU Y C, GUO Q X, et al. Efficient materialized view maintenance and trusted query for blockchain[J]. Journal of Software, 2020, 31(3): 680-694. | 
																													
																						| 9 | SOLANK S S. Incremental maintenance of a materialized view in data warehousing: an effective approach[J]. Global Journal of Computer Science and Technology, 2018, 18(3-C): 11-17. | 
																													
																						| 10 | ÖZCAN F, TIAN Y, TÖZÜN P. Hybrid transactional/analytical processing: a survey[C]// Proceedings of the 2017 ACM International Conference on Management of Data. New York: ACM, 2017: 1771-1775.  10.1145/3035918.3054784 | 
																													
																						| 11 | RAZA A, CHRYSOGELOS P, ANADIOTIS A C, et al. Adaptive HTAP through elastic resource scheduling[C]// Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2020: 2043-2054.  10.1145/3318464.3389783 | 
																													
																						| 12 | SAXENA D M, BAE S, NAKHAEI A, et al. Driving in dense traffic with model-free reinforcement learning[C]// Proceedings of the 2020 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2020: 5385-5392.  10.1109/icra40945.2020.9197132 | 
																													
																						| 13 | POLYDOROS A S, NALPANTIDIS L. Survey of model-based reinforcement learning: applications on robotics[J]. Journal of Intelligent and Robotic Systems, 2017, 86(2): 153-173.  10.1007/s10846-017-0468-y | 
																													
																						| 14 | 赵婷婷,孔乐,韩雅杰,等. 模型化强化学习研究综述[J]. 计算机科学与探索, 2020, 14(6): 918-927. | 
																													
																						|  | ZHAO T T, KONG L, HAN Y J, et al. Review of model-based reinforcement learning[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 918-927. | 
																													
																						| 15 | 秦智慧,李宁,刘晓彤,等. 无模型强化学习研究综述[J]. 计算机科学, 2021, 48(3): 180-187.  10.11896/jsjkx.200700217 | 
																													
																						|  | QIN Z H, LI N, LIU X T, et al. Overview of research on model-free reinforcement learning[J]. Computer Science, 2021, 48(3): 180-187.  10.11896/jsjkx.200700217 | 
																													
																						| 16 | 刘建伟,高峰,罗雄麟. 基于值函数和策略梯度的深度强化学习综述[J]. 计算机学报, 2019, 42(6): 1406-1438.  10.11897/SP.J.1016.2019.01406 | 
																													
																						|  | LIU J W, GAO F, LUO X L. Survey of deep reinforcement learning based on value function and policy gradient[J]. Chinese Journal of Computers, 2019, 42(6): 1406-1438.  10.11897/SP.J.1016.2019.01406 | 
																													
																						| 17 | CHEN H K, DAI X Y, CAI H, et al. Large-scale interactive recommendation with tree-structured policy gradient[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 3312-3320.  10.1609/aaai.v33i01.33013312 | 
																													
																						| 18 | 刘思嘉,童向荣. 基于强化学习的城市交通路径规划[J]. 计算机应用, 2021, 41(1): 185-190.  10.11772/j.issn.1001-9081.2020060949 | 
																													
																						|  | LIU S J, TONG X R. Urban transportation path planning based on reinforcement learning[J]. Journal of Computer Applications, 2021, 41(1): 185-190.  10.11772/j.issn.1001-9081.2020060949 | 
																													
																						| 19 | WATKINS C J C S. Learning from delayed rewards[D/OL]. Cambridge: King’s College, 1989 [2021-09-12].. | 
																													
																						| 20 | OTTONI A L C, NEPOMUCENO E G, DE OLIVEIRA M S, et al. Reinforcement learning algorithms in global path planning for mobile robot[J]. Soft Computing, 2020, 24(6): 4441-4453.  10.1007/s00500-019-04206-w | 
																													
																						| 21 | LOW E S, ONG P, CHEAH K C. Solving the optimal path planning of a mobile robot using improved Q-learning[J]. Robotics and Autonomous Systems, 2019, 115: 143-161.  10.1016/j.robot.2019.02.013 | 
																													
																						| 22 | SARKAR S, KUNDU A. Performance enhancement of cloud based storage using disk scheduling technique[J]. International Journal of Cloud Applications and Computing, 2020, 10(1): 46-63.  10.4018/ijcac.2020010104 | 
																													
																						| 23 | ZHANG Z Z, PAN Z Y, KOCHENDERFER M J. Weighted double Q-learning[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2017: 3455-3461. |