| 1 | HAN J Y, ZHENG L, XU Y B, et al. Adaptive deep modeling of users and items using side information for recommendation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(3):737-748.  10.1109/tnnls.2019.2909432 | 
																													
																						| 2 | 刘华真,王巍,谷壬倩,等. 基于用户浏览行为的个性化推荐研究综述[J]. 计算机应用研究, 2021, 38(8):2268-2277.  10.19734/j.issn.1001-3695.2020.10.0347 | 
																													
																						|  | LIU H Z, WANG W, GU R Q, et al. Survey of personalized recommendation study based on user browsing behavior[J]. Application Research of Computers, 2021, 38(8):2268-2277.  10.19734/j.issn.1001-3695.2020.10.0347 | 
																													
																						| 3 | YANG D Q, ZHANG D Q, ZHENG V W, et al. Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(1):129-142.  10.1109/tsmc.2014.2327053 | 
																													
																						| 4 | WANG W Q, YIN H Z, DU X Z, et al. TPM: a temporal personalized model for spatial item recommendation[J]. ACM Transactions on Intelligent Systems and Technology, 2018, 9(6): No.61.  10.1145/3230706 | 
																													
																						| 5 | SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization[C]// Proceedings of the 20th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2007: 1257-1264.  10.1145/1390156.1390267 | 
																													
																						| 6 | KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8):30-37.  10.1109/mc.2009.263 | 
																													
																						| 7 | BARKAN O, KOENIGSTEIN N. Item2Vec: neural item embedding for collaborative filtering [C]// Proceedings of the IEEE 26th International Workshop on Machine Learning for Signal Processing. Piscataway: IEEE, 2016:1-6.  10.1109/mlsp.2016.7738886 | 
																													
																						| 8 | LIANG D W, KRISHNAN R G, HOFFMAN M D, et al. Variational autoencoders for collaborative filtering[C]// Proceedings of the 2018 World Wide Web Conference. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2018: 689-698.  10.1145/3178876.3186150 | 
																													
																						| 9 | KOREN Y. Collaborative filtering with temporal dynamics[C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 447-456.  10.1145/1557019.1557072 | 
																													
																						| 10 | RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]// Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010: 811-820.  10.1145/1772690.1772773 | 
																													
																						| 11 | HE R N, McAULEY J. Fusing similarity models with Markov chains for sparse sequential recommendation[C]// Proceedings of the IEEE 16th International Conference on Data Mining. Piscataway: IEEE, 2016: 191-200.  10.1109/icdm.2016.0030 | 
																													
																						| 12 | HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[EB/OL]. (2016-03-29) [2021-10-14].. | 
																													
																						| 13 | RANGAPURAM S S, SEEGER M, GASTHAUS J, et al. Deep state space models for time series forecasting[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 7796-7805. | 
																													
																						| 14 | LI L Y, YAN J C, YANG X K, et al. Learning interpretable deep state space model for probabilistic time series forecasting[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 2901-2908.  10.24963/ijcai.2019/402 | 
																													
																						| 15 | KIPF T, van der POL E, WELLING M. Contrastive learning of structured world models[EB/OL]. (2020-01-05) [2021-10-14].. | 
																													
																						| 16 | TANG J X, WANG K. Personalized top-N sequential recommendation via convolutional sequence embedding[C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 565-573.  10.1145/3159652.3159656 | 
																													
																						| 17 | MA C, KANG P, LIU X. Hierarchical gating networks for sequential recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 825-833.  10.1145/3292500.3330984 | 
																													
																						| 18 | HU H J, HE X N, GAO J Y, et al. Modeling personalized item frequency information for next-basket recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1071-1080.  10.1145/3397271.3401066 | 
																													
																						| 19 | 王娜,何晓明,刘志强,等. 一种基于用户播放行为序列的个性化视频推荐策略[J]. 计算机学报, 2020, 43(1):123-135.  10.11897/SP.J.1016.2020.00123 | 
																													
																						|  | WANG N, HE X M, LIU Z Q, et al. Personalized video recommendation strategy based on user’s playback behavior sequence[J]. Chinese Journal of Computers, 2020, 43(1):123-135.  10.11897/SP.J.1016.2020.00123 | 
																													
																						| 20 | 孙光福,吴乐,刘淇,等. 基于时序行为的协同过滤推荐算法[J]. 软件学报, 2013, 24(11):2721-2733.  10.3724/sp.j.1001.2013.04478 | 
																													
																						|  | SUN G F, WU L, LIU Q, et al. Recommendations based on collaborative filtering by exploiting sequential behaviors[J]. Journal of Software, 2013, 24(11):2721-2733.  10.3724/sp.j.1001.2013.04478 | 
																													
																						| 21 | YIN D W, HONG L J, XUE Z Z, et al. Temporal dynamics of user interests in tagging systems[C]// Proceedings of the 25th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2011:1279-1285.  10.1609/aaai.v25i1.8095 | 
																													
																						| 22 | ZHOU C, BAI J Z, SONG J S, et al. ATRank: an attention-based user behavior modeling framework for recommendation[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018:4564-4571.  10.1609/aaai.v32i1.11618 | 
																													
																						| 23 | 蔡海尼,牛冰慧,文俊浩,等. 基于时序模型和矩阵分解的推荐算法[J]. 计算机应用研究, 2018, 35(6):1624-1627, 1659.  10.3969/j.issn.1001-3695.2018.06.005 | 
																													
																						|  | CAI H N, NIU B H, WEN J H, et al. Recommender algorithm based on time series model and matrix factorization[J]. Application Research of Computers, 2018, 35(6):1624-1627, 1659.  10.3969/j.issn.1001-3695.2018.06.005 | 
																													
																						| 24 | YE W W, WANG S Q, CHEN X, et al. Time matters: sequential recommendation with complex temporal information[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1459-1468.  10.1145/3397271.3401154 | 
																													
																						| 25 | WANG P F, GUO J F, LAN Y Y, et al. Learning hierarchical representation model for next basket recommendation[C]// Proceedings of the 38th International ACM SIGIR conference on Research and Development in Information Retrieval. New York: ACM, 2015:403-412.  10.1145/2766462.2767694 | 
																													
																						| 26 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2021-10-14].. | 
																													
																						| 27 | HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[EB/OL]. (2012-07-03) [2021-10-14].. |