《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (12): 3651-3662.DOI: 10.11772/j.issn.1001-9081.2021101821
收稿日期:
2021-10-26
修回日期:
2021-12-21
接受日期:
2021-12-23
发布日期:
2021-12-31
出版日期:
2022-12-10
通讯作者:
梁天恺
作者简介:
曾碧(1963—),女,广东广州人,教授,博士,主要研究方向:智能信息处理、智能机器人基金资助:
Tiankai LIANG1(), Bi ZENG2, Guang CHEN1
Received:
2021-10-26
Revised:
2021-12-21
Accepted:
2021-12-23
Online:
2021-12-31
Published:
2022-12-10
Contact:
Tiankai LIANG
About author:
ZENG Bi,born in 1963, Ph. D., professor. Her research interests include intelligent information processing, intelligent robot.Supported by:
摘要:
在强调数据确权以及隐私保护的时代背景下,联邦学习作为一种新的机器学习范式,能够在不暴露各方数据的前提下达到解决数据孤岛以及隐私保护问题的目的。目前,基于联邦学习的建模方法已成为主流并且获得了很好的效果,因此对联邦学习的概念、技术、应用和挑战进行总结与分析具有重要的意义。首先,阐述了机器学习的发展历程以及联邦学习出现的必然性,并给出联邦学习的定义与分类;其次,介绍并分析了目前业界认可的三种联邦学习方法:横向联邦学习、纵向联邦学习和联邦迁移学习;然后,针对联邦学习的隐私保护问题,归纳并总结了目前常见的隐私保护技术;此外,还对联邦学习的现有主流开源框架进行了介绍与对比,同时给出了联邦学习的应用场景;最后,展望了联邦学习所面临的挑战和未来的研究方向。
中图分类号:
梁天恺, 曾碧, 陈光. 联邦学习综述:概念、技术、应用与挑战[J]. 计算机应用, 2022, 42(12): 3651-3662.
Tiankai LIANG, Bi ZENG, Guang CHEN. Federated learning survey:concepts, technologies, applications and challenges[J]. Journal of Computer Applications, 2022, 42(12): 3651-3662.
框架 | 横向联邦学习 | 纵向联邦学习 | 联邦迁移学习 | Kubernetes | 树模型 | 联邦特征工程 | 联邦在线推理 | 支持的隐私保护算法 |
---|---|---|---|---|---|---|---|---|
FATE | 支持 | 支持 | 支持 | 支持 | 支持 | 支持 | 支持 | 同态加密,隐私共享, RSA, DiffieHellman |
PaddleFL | 支持 | 支持 | 不支持 | 不支持 | 不支持 | 不支持 | 不支持 | 差分隐私 |
TFF | 支持 | 不支持 | 不支持 | 不支持 | 不支持 | 不支持 | 不支持 | 差分隐私 |
PySyft | 支持 | 不支持 | 不支持 | 不支持 | 不支持 | 不支持 | 不支持 | 同态加密,隐私共享 |
表1 4种主流的联邦学习开源框架对比
Tab.1 Comparison of four mainstream federated learning open-source frameworks
框架 | 横向联邦学习 | 纵向联邦学习 | 联邦迁移学习 | Kubernetes | 树模型 | 联邦特征工程 | 联邦在线推理 | 支持的隐私保护算法 |
---|---|---|---|---|---|---|---|---|
FATE | 支持 | 支持 | 支持 | 支持 | 支持 | 支持 | 支持 | 同态加密,隐私共享, RSA, DiffieHellman |
PaddleFL | 支持 | 支持 | 不支持 | 不支持 | 不支持 | 不支持 | 不支持 | 差分隐私 |
TFF | 支持 | 不支持 | 不支持 | 不支持 | 不支持 | 不支持 | 不支持 | 差分隐私 |
PySyft | 支持 | 不支持 | 不支持 | 不支持 | 不支持 | 不支持 | 不支持 | 同态加密,隐私共享 |
1 | 王晋东,张明清,韩继红. 信息系统安全技术策略研究[J]. 计算机应用研究, 2001, 18(5):61-63. 10.3969/j.issn.1001-3695.2001.05.022 |
WANG J D, ZHANG M Q, HAN J H. Research on security technic policy of information system[J]. Application Research of Computers, 2001, 18(5):61-63. 10.3969/j.issn.1001-3695.2001.05.022 | |
2 | 何柯,陈悦之,陈家泽. 数据确权的理论逻辑与路径设计[J]. 财经科学, 2021(3):43-55. 10.3969/j.issn.1000-8306.2021.03.005 |
HE K, CHEN Y Z, CHEN J Z. Theoretical logic and path design of the confirmation of data property right[J]. Finance and Economics, 2021(3):43-55. 10.3969/j.issn.1000-8306.2021.03.005 | |
3 | 闫境华,石先梅. 数据生产要素化与数据确权的政治经济学分析[J].内蒙古社会科学, 2021, 42(5):113-120. |
YAN J H, SHI X M. A political economy analysis of data production factorization and data confirmation[J]. Inner Mongolia Social Sciences, 2021, 42(5):113-120. | |
4 | 何志峰. 主数据集成:打破信息共享的壁垒[J]. 上海信息化, 2009(4):59-61. |
HE Z F. Master data integration: breaking the barriers of information sharing[J]. Shanghai Informatization, 2009(4):59-61. | |
5 | KASTURI J, BROWN A P, BROWN P, et al. Interconnectivity of disparate nonclinical data silos for drug discovery and development[J]. Therapeutic Innovation and Regulatory Science, 2014, 48(4): 498-506. 10.1177/2168479014531421 |
6 | 叶明,王岩. 人工智能时代数据孤岛破解法律制度研究[J]. 大连理工大学学报(社会科学版), 2019, 40(5):69-77. 10.19525/j.issn1008-407x.2019.05.009 |
YE M, WANG Y. Research on the legal system of data island breaking in the age of artificial intelligence[J]. Journal of Dalian University of Technology (Social Sciences), 2019, 40(5):69-77. 10.19525/j.issn1008-407x.2019.05.009 | |
7 | 杨强. AI与数据隐私保护:联邦学习的破解之道[J]. 信息安全研究, 2019, 5(11):961-965. 10.3969/j.issn.2096-1057.2019.11.003 |
YANG Q. AI and data privacy protection: the way to federated learning[J]. Journal of Information Security Research, 2019, 5(11):961-965. 10.3969/j.issn.2096-1057.2019.11.003 | |
8 | 周茂君,潘宁. 赋权与重构区块链技术对数据孤岛的破解[J]. 新闻与传播评论, 2018, 71(5):58-67. |
ZHOU M J, PAN N. Empowerment and reconstruction: blockchain technology breaks data isolated island[J]. Journalism and Communication Review, 2018, 71(5):58-67. | |
9 | JANG J, KANG B B. Securing a communication channel for the trusted execution environment[J]. Computers and Security, 2019, 83: 79-92. 10.1016/j.cose.2019.01.012 |
10 | 郑显义,李文,孟丹. TrustZone技术的分析与研究[J]. 计算机学报, 2016, 39(9):1912-1928. 10.11897/SP.J.1016.2016.01912 |
ZHENG X Y, LI W, MENG D. Analysis and research on TrustZone technology[J]. Chinese Journal of Computers, 2016, 39(9):1912-1928. 10.11897/SP.J.1016.2016.01912 | |
11 | 王凤领. 基于IPSec的VPN技术的应用研究[J]. 计算机技术与发展, 2012, 22(9):250-253. |
WANG F L. Study on application of VPN technology based on IPSec[J]. Computer Technology and Development, 2012, 22(9):250-253. | |
12 | AlphaPoint. Performance of distributed system functions using a trusted execution environment: 20180239897A1[P]. 2020-08-23. 10.14722/ndss.2015.23189 |
13 | KHAN W Z, AHMED E, HAKAK S, et al. Edge computing: a survey[J]. Future Generation Computer Systems, 2019, 97:219-235. 10.1016/j.future.2019.02.050 |
14 | 施巍松,张星洲,王一帆,等. 边缘计算:现状与展望[J]. 计算机研究与发展, 2019, 56(1):69-89. 10.7544/issn1000-1239.2019.20180760 |
SHI W S, ZHANG X Z, WANG Y F, et al. Edge computing: state-of-the-art and future directions[J]. Journal of Computer Research and Development, 2019, 56(1):69-89. 10.7544/issn1000-1239.2019.20180760 | |
15 | SHI W S, CAO J, ZHANG Q, et al. Edge computing: vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637-646. 10.1109/jiot.2016.2579198 |
16 | OUYANG T, ZHOU Z, CHEN X. Follow me at the edge: mobility-aware dynamic service placement for mobile edge computing[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(10): 2333-2345. 10.1109/jsac.2018.2869954 |
17 | 王良民,倪晓铃,赵蕙. 网络层匿名通信协议综述[J]. 网络与信息安全学报, 2020, 6(1):11-26. 10.11959/j.issn.2096-109x.2020006 |
WANG L M, NI X L, ZHAO H. Survey of network-layer anonymous communication protocols[J]. Chinese Journal of Network and Information Security, 2020, 6(1):11-26. 10.11959/j.issn.2096-109x.2020006 | |
18 | SALTZER J H. On the origin of Kerberos[J]. IEEE Annals of the History of Computing, 2021, 43(1): 89-91. 10.1109/mahc.2021.3051508 |
19 | YU H, KIM Y. New RSA encryption mechanism using one-time encryption keys and unpredictable bio-signal for wireless communication devices[J]. Electronics, 2020, 9(2): No.246. 10.3390/electronics9020246 |
20 | VEERAMANIKANDAN K, MANJAMADEVI P, LATHA K. Secure image steganography combined with DES encryption[J]. Wireless Communication, 2015, 7(7): 228-231. |
21 | 王亚辉,张焕国,王后珍. 基于e次根攻击RSA的量子算法[J]. 工程科学与技术, 2018, 50(2):163-169. 10.1109/cc.2018.8300269 |
WANG Y H, ZHANG H G, WANG H Z. Quantum algorithm for attacking RSA based on the e th root[J]. Advanced Engineering Sciences, 2018, 50(2):163-169. 10.1109/cc.2018.8300269 | |
22 | BERNSTEIN D J, LANGE T. Post-quantum cryptography[J]. Nature, 2017, 549(7671): 188-194. 10.1038/nature23461 |
23 | 路献辉. 后量子密码算法[J]. 中国计算机学会通讯, 2018, 14(10):23-26. |
LU X H. Post-quantum cryptographic algorithm[J]. Communications of the CCF, 2018, 14(10):23-26. | |
24 | ZHANG C, XIE Y, BAI H, et al. A survey on federated learning[J]. Knowledge-Based Systems, 2021, 216: No.106775. 10.1016/j.knosys.2021.106775 |
25 | 王壮壮,陈宏松,杨丽敏,等. 联邦学习与数据安全研究综述[J]. 智能计算机与应用, 2021, 11(1):126-129, 133. 10.3969/j.issn.2095-2163.2021.01.029 |
WANG Z Z, CHEN H S, YANG L M, et al. Review of federal learning and data security[J]. Intelligent Computer and Applications, 2021, 11(1):126-129, 133. 10.3969/j.issn.2095-2163.2021.01.029 | |
26 | LIANG T K, ZENG B, LIU J Q, et al. An unsupervised user behavior prediction algorithm based on machine learning and neural network for smart home[J]. IEEE Access, 2018, 6: 49237-49247. 10.1109/access.2018.2868984 |
27 | 梁天恺,曾碧,刘建圻. 基于FP-Growth的智能家居用户时序关联操控习惯挖掘方法[J]. 计算机应用研究, 2020, 37(2):385-389. |
LIANG T K, ZENG B, LIU J Q. FP-Growth-based user temporal association control habits mining method for smart home[J]. Application Research of Computers, 2020, 37(2):385-389. | |
28 | YANG H H, ZHAO Z Y, QUEK T Q S. Enabling intelligence at network edge: an overview of federated learning[J]. ZTE Communications, 2020, 18(2):2-10. |
29 | YANG Q, LIU Y, CHEN T J, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): No.12. 10.1145/3298981 |
30 | 潘如晟,韩东明,潘嘉铖,等. 联邦学习可视化:挑战与框架[J]. 计算机辅助设计与图形学学报, 2020, 32(4):513-519. 10.3724/SP.J.1089.2020.18172 |
PAN R S, HAN D M, PAN J C, et al. Visualization for federated learning: challenges and framework[J]. Journal of Computer-Aided Design and Computer Graphics, 2020, 32(4):513-519. 10.3724/SP.J.1089.2020.18172 | |
31 | MOTHUKURI V, PARIZI R M, POURIYEH S, et al. A survey on security and privacy of federated learning[J]. Future Generation Computer Systems, 2021, 115: 619-640. 10.1016/j.future.2020.10.007 |
32 | 宋思嘉,单晨璐,王爽,等.基因数据隐私问题及相关保护技术进展研究[J].医学信息学杂志, 2021,42(6):2-9,23. 10.3969/j.issn.1673-6036.2021.06.001 |
SONG S J, SHAN C L, WANG S, et al. Study on the privacy issues of genetic data and the progress of related protection technologies [J].Journal of Medical Informatics, 2021, 42(6):2-9,23. 10.3969/j.issn.1673-6036.2021.06.001 | |
33 | 十三届全国人大常委会第三十次会议 20 日表决通过《中华人民共和国个人信息保护法》[J]. 信息网络安全, 2021, 21(9):96-96. |
The 30th session of the Standing Committee of the 13th National People's Congress voted to pass the Personal Information Protection Law of the People's Republic of China on the 20th[J]. Netinfo Security, 2021, 21(9):96-96. | |
34 | 陆康,刘慧,任贝贝,等. 智慧图书馆用户数据隐私保护研究 ——基于《中华人民共和国网络安全法》和《一般数据保护条例》的文本启示[J]. 图书馆理论与实践, 2020(3):17-21. |
LU K, LIU H, REN B B, et al. Research on user data privacy protection of smart libraries: based on the enlightenment of Cybersecurity Law of the People's Republic of China and General Data Protection Regulation [J]. Library Theory and Practice, 2020(3):17-21. | |
35 | MENDIBOURE L, CHALOUF M A, KRIEF F. Edge computing based applications in vehicular environments: comparative study and main issues[J]. Journal of Computer Science and Technology, 2019, 34(4): 869-886. 10.1007/s11390-019-1947-3 |
36 | ABDULRAHMAN S, TOUT H, OULD-SLIMANE H, et al. A survey on federated learning: the journey from centralized to distributed on-site learning and beyond[J]. IEEE Internet of Things Journal, 2021, 8(7): 5476-5497. 10.1109/jiot.2020.3030072 |
37 | 陈兵,成翔,张佳乐,等. 联邦学习安全与隐私保护综述[J]. 南京航空航天大学学报, 2020, 52(5):675-684. 10.16356/j.1005 |
CHEN B, CHENG X, ZHANG J L, et al. Survey of security and privacy in federated learning[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2020, 52(5):675-684. 10.16356/j.1005 | |
38 | ZHU H Y, ZHANG H Y, JIN Y C. From federated learning to federated neural architecture search: a survey[J]. Complex and Intelligent Systems, 2021, 7(2): 639-657. 10.1007/s40747-020-00247-z |
39 | KONEČNÝ J, McMAHAN H B, RAMAGE D, et al. Federated optimization: distributed machine learning for on-device intelligence[EB/OL]. (2016-10-08) [2021-10-19].. |
40 | McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2017: 1273-1282. |
41 | McMAHAN H B, MOORE E, RAMAGE D, et al. Federated learning of deep networks using model averaging[EB/OL]. (2016-02-17) [2021-10-19].. |
42 | 周俊,方国英,吴楠. 联邦学习安全与隐私保护研究综述[J]. 西华大学学报(自然科学版), 2020, 39(4):9-17. 10.12198/j.issn.1673?159X.3607 |
ZHOU J, FANG G Y, WU N. Survey on security and privacy-preserving in federated learning[J]. Journal of Xihua University (Natural Science Edition), 2020, 39(4):9-17. 10.12198/j.issn.1673?159X.3607 | |
43 | ENCHEVA S, TUMIN S. On improving quality of the decision making process in a federated learning system[C]// Proceedings of the 2008 International Conference on Cooperative Design, Visualization and Engineering, LNCS 5220. Berlin: Springer, 2008: 192-195. |
44 | BONAWITZ K, EICHNER H, GRIESKAMP W, et al. Towards federated learning at scale: system design[C/OL]// Proceedings of the 2nd Conference on Systems and Machine Learning. [2021-10-19].,the%20global%20model%20to%20each%20of%20the%20devices. |
45 | XU J J, DU W L, XU Q Y, et al. Federated learning based atmospheric source term estimation in urban environments[J]. Computers and Chemical Engineering, 2021, 155: No.107505. 10.1016/j.compchemeng.2021.107505 |
46 | LI Q B, WEN Z Y, HE B S. Federated learning systems: vision, hype and reality for data privacy and protection[EB/OL]. [2021-10-19].. 10.1109/tkde.2021.3124599 |
47 | XIA Q, YE W, TAO Z Y, et al. A survey of federated learning for edge computing: research problems and solutions[J]. High-Confidence Computing, 2021, 1(1): No.100008. 10.1016/j.hcc.2021.100008 |
48 | CHAMIKARA M A P, BERTOK P, KHALIL I, et al. Privacy preserving distributed machine learning with federated learning[J]. Computer Communications, 2021, 171: 112-125. 10.1016/j.comcom.2021.02.014 |
49 | 王佳,苗璐. 联邦学习浅析[J]. 现代计算机, 2020(25):27-31, 36. 10.3969/j.issn.1007-1423.2020.25.005 |
WANG J, MIAO L. Brief introduction of federated learning[J]. Modern Computer, 2020(25):27-31, 36. 10.3969/j.issn.1007-1423.2020.25.005 | |
50 | AMIRI M M, GÜNDÜZ D. Federated learning over wireless fading channels[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3546-3557. 10.1109/twc.2020.2974748 |
51 | KAIROUZ P, McMAHAN H B, AVENT B, et al. Advances and open problems in federated learning[J]. Foundations and Trends in Machine Learning, 2021, 14(1/2): 1-210. |
52 | LI T, SAHU A K, TALWALKAR A, et al. Federated learning: challenges, methods, and future directions[J]. IEEE Signal Processing Magazine, 2020, 37(3): 50-60. 10.1109/msp.2020.2975749 |
53 | QIN Z J, LI G Y, YE H. Federated learning and wireless communications[J]. IEEE Wireless Communications, 2021, 28(5):134-140. 10.1109/mwc.011.2000501 |
54 | LIU Y, YUAN X L, XIONG Z H, et al. Federated learning for 6G communications: challenges, methods, and future directions[J]. China Communications, 2020, 17(9): 105-118. 10.23919/jcc.2020.09.009 |
55 | KOURTELLIS N, KATEVAS K, PERINO D. FlaaS: federated learning as a service[C]// Proceedings of the 1st Workshop on Distributed Machine Learning. New York: ACM, 2020: 7-13. 10.1145/3426745.3431337 |
56 | HARD A, RAO K, MATHEWS R, et al. Federated learning for mobile keyboard prediction[EB/OL]. (2019-02-28) [2021-10-19].. |
57 | YANG T, ANDREW G, EICHNER H, et al. Applied federated learning: improving google keyboard query suggestions[EB/OL]. (2018-12-07) [2021-10-19].. |
58 | CHEN M Q, MATHEWS R, OUYANG T, et al. Federated learning of out-of-vocabulary words[EB/OL]. (2019-03-26) [2021-10-19].. |
59 | ACAR D A E, ZHAO Y, NAVARRO R M, et al. Federated learning based on dynamic regularization[EB/OL]. (2021-11-09) [2021-12-19].. |
60 | LI Q B, WEN Z Y, WU Z M, et al. A survey on federated learning systems: vision, hype and reality for data privacy and protection[EB/OL]. (2021-12-05) [2021-12-19].. 10.1109/tkde.2021.3124599 |
61 | LIU Y, YU J J Q, KANG J W, et al. Privacy-preserving traffic flow prediction: a federated learning approach[J]. IEEE Internet of Things Journal, 2020, 7(8): 7751-7763. 10.1109/jiot.2020.2991401 |
62 | 唐春明,胡业周. 基于多比特全同态加密的安全多方计算[J]. 计算机学报, 2021, 44(4):836-845. 10.11897/SP.J.1016.2021.00836 |
TANG C M, HU Y Z. Secure multi-party computation based on multi-bit fully homomorphic encryption[J]. Chinese Journal of Computers, 2021, 44(4):836-845. 10.11897/SP.J.1016.2021.00836 | |
63 | 罗长银,陈学斌,马春地,等. 基于层析分析改进的联邦平均算法[J]. 计算机科学, 2021, 48(8):32-40. 10.11896/jsjkx.201000093 |
LUO C Y, CHEN X B, MA C D, et al. Improved federated average algorithm based on tomographic analysis[J]. Computer Science, 2021, 48(8):32-40. 10.11896/jsjkx.201000093 | |
64 | 王健宗,孔令炜,黄章成,等. 联邦学习隐私保护研究进展[J]. 大数据, 2021, 7(3):130-149. |
WANG J Z, KONG L W, HUANG Z C, et al. Research advances on privacy protection of federated learning[J]. Big Data Research, 2021, 7(3):130-149. | |
65 | LYU L J, YU H, YANG Q. Threats to federated learning: a survey[EB/OL]. (2020-03-04) [2021-10-20].. 10.1007/978-3-030-63076-8_1 |
66 | WANG H Y, YUROCHKIN M, SUN Y K, et al. Federated learning with matched averaging[EB/OL]. (2020-02-15) [2021-10-20].. |
67 | 夏家骏,鲁颖,张子扬,等. 基于秘密共享与同态加密的纵向联邦学习方案研究[J]. 信息通信技术与政策, 2021, 47(6):19-26. 10.12267/j.issn.2096-5931.2021.06.003 |
XIA J J, LU Y, ZHANG Z Y, et al. Research on vertical federated learning based on secret sharing and homomorphic encryption[J]. Information and Communications Technology and Policy, 2021, 47(6):19-26. 10.12267/j.issn.2096-5931.2021.06.003 | |
68 | YANG K, JIANG T, SHI Y M, et al. Federated learning via over-the-air computation[J]. IEEE Transactions on Wireless Communications, 2020, 19(3): 2022-2035. 10.1109/twc.2019.2961673 |
69 | LIU Y, KANG Y, ZHANG X W, et al. A communication-efficient collaborative learning framework for distributed features[EB/OL]. (2020-07-31) [2021-10-20].. 10.1109/tsp.2022.3198176 |
70 | FENG S W, YU H. Multi-participant multi-class vertical federated learning[EB/OL]. (2020-01-30) [2021-10-20].. |
71 | 宋凯. 联邦学习在腾讯微视广告投放中的实践[EB/OL]. [2021-10-20].[EB/OL]. [2021-10-20].) |
72 | ROMANINI D, HALL A J, PAPADOPOULOS P, et al. PyVertical: a vertical federated learning framework for multi-headed splitNN[EB/OL]. (2021-04-14) [2021-10-20].. |
73 | LI T, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[C/OL]// Proceedings of the 3rd Machine Learning and Systems. [2021-10-19].. 10.1109/ieeeconf44664.2019.9049023 |
74 | SUN J K, YANG X, YAO Y S, et al. Vertical federated learning without revealing intersection membership[EB/OL]. (2021-06-10) [2021-10-20].. |
75 | HASHEMI N, SAFARI P, SHARIATI B, et al. Vertical federated learning for privacy-preserving ML model development in partially disaggregated networks[C]// Proceedings of the 2021 European Conference on Optical Communication. Piscataway: IEEE, 2021: 1-4. 10.1109/ecoc52684.2021.9605846 |
76 | ZHANG Y R, WU Q R, SHIKH-BAHAEI M. Vertical federated learning based privacy-preserving cooperative sensing in cognitive radio networks[C]// Proceedings of the 2020 IEEE Globecom Workshops. Piscataway: IEEE, 2020:1-6. 10.1109/gcwkshps50303.2020.9367398 |
77 | CHENG K W, FAN T, JIN Y L, et al. SecureBoost: a lossless federated learning framework[J]. IEEE Intelligent Systems, 2021, 36(6): 87-98. 10.1109/mis.2021.3082561 |
78 | 张君如,赵晓焱,袁培燕. 面向用户隐私保护的联邦安全树算法[J]. 计算机应用, 2020, 40(10):2980-2985. |
ZHANG J R, ZHAO X Y, YUAN P Y. Federated security tree algorithm for user privacy protection[J]. Journal of Computer Applications, 2020, 40(10):2980-2985. | |
79 | 杨强,刘洋,程勇,等. 联邦学习[M]. 北京:电子工业出版社, 2020:77-80. 10.1007/978-3-031-01585-4_9 |
YANG Q, LIU Y, CHENG Y, et al. Federated Learning[M]. Beijing: Publishing House of Electronics Industry, 2020:77-80. 10.1007/978-3-031-01585-4_9 | |
80 | 刘俊旭,孟小峰. 机器学习的隐私保护研究综述[J]. 计算机研究与发展, 2020, 57(2): 346-362. 10.7544/issn1000-1239.2020.20190455 |
LIU J X, MENG X F. Survey on privacy-preserving machine learning[J]. Journal of Computer Research and Development, 2020, 57(2): 346-362. 10.7544/issn1000-1239.2020.20190455 | |
81 | 刘文炎,沈楚云,王祥丰,等. 可信机器学习的公平性综述[J]. 软件学报, 2021, 32(5): 1404-1426. |
LIU W Y, SHEN C Y, WANG X F, et al. Survey on fairness in trustworthy machine learning[J]. Journal of Software, 2021, 32(5): 1404-1426. | |
82 | 杨强,童咏昕,王晏晟. 鱼与熊掌可以兼得——“联邦迁移学习”直面小数据与隐私关切挑战[J]. 前沿科学, 2019(2):61-66. 10.3969/j.issn.1673-8128.2019.02.015 |
YANG Q, TONG Y X, WANG Y C. You can have it both ways — “federal migration learning” faces the challenges of small data and privacy concerns[J]. Frontier Science, 2019(2):61-66. 10.3969/j.issn.1673-8128.2019.02.015 | |
83 | YANG H W, HE H, ZHANG W Z, et al. FedSteg: a federated transfer learning framework for secure image steganalysis[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(2):1084-1094. 10.1109/tnse.2020.2996612 |
84 | CHEN Y Q, QIN X, WANG J D, et al. FedHealth: a federated transfer learning framework for wearable healthcare[J]. IEEE Intelligent Systems, 2020, 35(4): 83-93. 10.1109/mis.2020.2988604 |
85 | LIU Y, KANG Y, XING C P, et al. A secure federated transfer learning framework[J]. IEEE Intelligent Systems, 2020, 35(4): 70-82. 10.1109/mis.2020.2988525 |
86 | JU C, GAO D S, MANE R, et al. Federated transfer learning for EEG signal classification[C]// Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2020: 3040-3045. 10.1109/embc44109.2020.9175344 |
87 | 肖林声,钱慎一. 基于使用MapReduce并行的同态加密和梯度选择的联邦迁移学习算法[J]. 网络空间安全, 2021, 12(S1):32-40. 10.3969/j.issn.1674-9456.2021.01.007 |
XIAO L S, QIAN S Y. Federated transfer learning algorithm based on parallel homomorphic encryption using MapReduce and gradient selection[J]. Cyberspace Security, 2021, 12(S1):32-40. 10.3969/j.issn.1674-9456.2021.01.007 | |
88 | DIMITRIADIS D, KUMATANI K, GMYR R, et al. Federated transfer learning with dynamic gradient aggregation[EB/OL]. (2020-08-06) [2021-10-20].. 10.21437/interspeech.2020-1791 |
89 | SEIF M, TANDON R, LI M. Wireless federated learning with local differential privacy[C]// Proceedings of the 2020 IEEE International Symposium on Information Theory. Piscataway: IEEE, 2020: 2604-2609. 10.1109/isit44484.2020.9174426 |
90 | HIESSL T, SCHALL D, KEMNITZ J, et al. Industrial federated learning — requirements and system design[C]// Proceedings of the 2020 International Conference on Practical Applications of Agents and Multi-Agent Systems, CCIS 1233. Cham: Springer, 2020: 42-53. |
91 | CHEN D Y, ZHAO H. Data security and privacy protection issues in cloud computing[C]// Proceedings of the 2012 International Conference on Computer Science and Electronics Engineering. Piscataway: IEEE, 2012: 647-651. 10.1109/iccsee.2012.193 |
92 | ZHANG D P. Big data security and privacy protection[C]// Proceedings of the 8th International Conference on Management and Computer Science. Dordrecht: Atlantis Press, 2018: 275-278. 10.2991/icmcs-18.2018.56 |
93 | WEI K, LI J, DING M, et al. Federated learning with differential privacy: algorithms and performance analysis[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3454-3469. 10.1109/tifs.2020.2988575 |
94 | NAOR M, PINKAS B. Efficient oblivious transfer protocols[C]// Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: SIAM, 2001: 448-457. |
95 | KOLESNIKOV V, SCHNEIDER T. Improved garbled circuit: free XOR gates and applications[C]// Proceedings of the 2008 International Colloquium on Automata, Languages, and Programming, LNCS 5126. Berlin: Springer, 2008:486-498. |
96 | KARNIN E, GREENE J, HELLMAN M. On secret sharing systems[J]. IEEE Transactions on Information Theory, 1983, 29(1): 35-41. 10.1109/tit.1983.1056621 |
97 | DE CRISTOFARO E, TSUDIK G. Practical private set intersection protocols with linear complexity[C]// Proceedings of the 2010 International Conference on Financial Cryptography and Data Security, LNCS 6052. Berlin: Springer, 2010: 143-159. |
98 | DWORK C. Differential privacy: a survey of results[C]// Proceedings of the 2008 International Conference on Theory and Applications of Models of Computation, LNCS 4978. Cham: Springer, 2008: 1-19. |
99 | NAEHRIG M, LAUTER K, VAIKUNTANATHAN V. Can homomorphic encryption be practical?[C]// Proceedings of the 3rd ACM Cloud Computing Security Workshop. New York: ACM, 2011: 113-124. 10.1145/2046660.2046682 |
100 | RABIN M O. How to exchange secrets with oblivious transfer[EB/OL]. (2011-10-18) [2021-10-21].. 10.1201/9781315383033-4 |
101 | CARTER H, LEVER C, TRAYNOR P. Whitewash: outsourcing garbled circuit generation for mobile devices[C]// Proceedings of the 30th Annual Computer Security Applications Conference. New York: ACM, 2014: 266-275. 10.1145/2664243.2664255 |
102 | BEIMEL A. Secret-sharing schemes: a survey[C]// Proceedings of the 2011 International Conference on Coding and Cryptology, LNCS 6639. Berlin: Springer, 2011:11-46. |
103 | HUANG Y, EVANS D, KATZ J. Private set intersection: are garbled circuits better than custom protocols?[C]// Proceedings of the 19th Annual Network and Distributed System Symposium. Reston, VA: Internet Society, 2012:1-15. |
104 | DWORK C, ROTH A. The algorithmic foundations of differential privacy[J]. Foundations and Trends in Theoretical Computer Science, 2013, 9(3):211-407. |
105 | GENTRY C. Fully homomorphic encryption using ideal lattices[C]// Proceedings of the 41st Annual ACM Symposium on Theory of Computing. New York: ACM, 2009: 169-178. 10.1145/1536414.1536440 |
106 | LIU Y, FAN T, CHEN T J, et al. FATE: an industrial grade platform for collaborative learning with data protection[J]. Journal of Machine Learning Research, 2021, 22: 1-6. |
107 | HU Y F, ZHOU Y H, XIAO J, et al. GFL: a decentralized federated learning framework based on blockchain[EB/OL]. (2021-04-13) [2021-10-21].. |
108 | ZHU X H, WANG J Z, HONG Z H, et al. Federated learning of unsegmented Chinese text recognition model[C]// Proceedings of the IEEE 31st International Conference on Tools with Artificial Intelligence. Piscataway: IEEE, 2019: 1341-1345. 10.1109/ictai.2019.00186 |
109 | ZILLER A, TRASK A, LOPARDO A, et al. PySyft: a library for easy federated learning[M]// REHMAN M H U, GABER M M. Federated Learning Systems: Towards Next-Generation AI, SCI 965. Cham: Springer, 2021: 111-139. |
110 | 微众银行. 联邦学习白皮书[EB/OL]. [2021-10-21]. . 10.47205/jdss.2021(2-iv)74 |
WeBank. White Paper of Federated Learning[EB/OL]. [2021-10-21].. 10.47205/jdss.2021(2-iv)74 | |
111 | KHOLOD I, YANAKI E, FOMICHEV D, et al. Open-source federated learning frameworks for IoT: a comparative review and analysis[J]. Sensors, 2021, 21(1): No.167. 10.3390/s21010167 |
112 | LI L, FAN Y X, TSE M, et al. A review of applications in federated learning[J]. Computers and Industrial Engineering, 2020, 149: No.106854. 10.1016/j.cie.2020.106854 |
113 | XU J, GLICKSBERG B S, SU C, et al. Federated learning for healthcare informatics[J]. Journal of Healthcare Informatics Research, 2021, 5(1): 1-19. 10.1007/s41666-020-00082-4 |
114 | KANG J W, XIONG Z H, NIYATO D, et al. Reliable federated learning for mobile networks[J]. IEEE Wireless Communications, 2020, 27(2): 72-80. 10.1109/mwc.001.1900119 |
115 | NILSSON A, SMITH S, ULM G, et al. A performance evaluation of federated learning algorithms[C]// Proceedings of the 2nd Workshop on Distributed Infrastructures for Deep Learning. New York: ACM, 2018: 1-8. 10.1145/3286490.3286559 |
116 | YAO J J, ANSARI N. Enhancing federated learning in fog-aided IoT by CPU frequency and wireless power control[J]. IEEE Internet of Things Journal, 2021, 8(5): 3438-3445. 10.1109/jiot.2020.3022590 |
117 | KONEČNÝ J, McMAHAN H B, YU F X, et al. Federated learning: strategies for improving communication efficiency[EB/OL]. (2017-10-30) [2021-10-21].. |
118 | KHAN L U, SAAD W, HAN Z, et al. Federated learning for Internet of Things: recent advances, taxonomy, and open challenges[J]. IEEE Communications Surveys and Tutorials, 2021, 23(3):1759-1799. 10.1109/comst.2021.3090430 |
119 | CHAMANI J G, PAPADOPOULOS D. Mitigating leakage in federated learning with trusted hardware[EB/OL]. (2020-11-12) [2021-10-21].. |
[1] | 陈廷伟, 张嘉诚, 王俊陆. 面向联邦学习的随机验证区块链构建[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2770-2776. |
[2] | 沈哲远, 杨珂珂, 李京. 基于双流神经网络的个性化联邦学习方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2319-2325. |
[3] | 罗玮, 刘金全, 张铮. 融合秘密分享技术的双重纵向联邦学习框架[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1872-1879. |
[4] | 陈学斌, 任志强, 张宏扬. 联邦学习中的安全威胁与防御措施综述[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1663-1672. |
[5] | 刘沛骞, 王水莲, 申自浩, 王辉. 基于轨迹扰动和路网匹配的位置隐私保护算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1546-1554. |
[6] | 高改梅, 张瑾, 刘春霞, 党伟超, 白尚旺. 基于区块链与CP-ABE策略隐藏的众包测试任务隐私保护方案[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 811-818. |
[7] | 余孙婕, 曾辉, 熊诗雨, 史红周. 基于生成式对抗网络的联邦学习激励机制[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 344-352. |
[8] | 马海峰, 李玉霞, 薛庆水, 杨家海, 高永福. 用于实现区块链隐私保护的属性基加密方案[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 485-489. |
[9] | 张祖篡, 陈学斌, 高瑞, 邹元怀. 基于标签分类的联邦学习客户端选择方法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3759-3765. |
[10] | 王伊婷, 万武南, 张仕斌, 张金全, 秦智. 基于SM9算法的可链接环签名方案[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3709-3716. |
[11] | 梁静, 万武南, 张仕斌, 张金全, 秦智. 面向主从链的慈善系统溯源存储模型[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3751-3758. |
[12] | 方鹏, 赵凡, 王保全, 王轶, 蒋同海. 区块链3.0的发展、技术与应用[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3647-3657. |
[13] | 高瑞, 陈学斌, 张祖篡. 面向部分图更新的动态社交网络隐私发布方法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3831-3838. |
[14] | 贾淼, 姚中原, 祝卫华, 高婷婷, 斯雪明, 邓翔. 零知识证明赋能区块链的进展与展望[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3669-3677. |
[15] | 王一帆, 林绍福, 李云江. 基于区块链和零知识证明的高速公路自由流收费方法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3741-3750. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||