《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (8): 2611-2618.DOI: 10.11772/j.issn.1001-9081.2022091343
收稿日期:
2022-09-15
修回日期:
2022-12-20
接受日期:
2023-01-05
发布日期:
2023-03-02
出版日期:
2023-08-10
通讯作者:
梁美佳
作者简介:
刘昕武(1989—),男,湖南株洲人,助理工程师,硕士,主要研究方向:大数据分析基金资助:
Meijia LIANG1(), Xinwu LIU2, Xiaopeng HU1,3
Received:
2022-09-15
Revised:
2022-12-20
Accepted:
2023-01-05
Online:
2023-03-02
Published:
2023-08-10
Contact:
Meijia LIANG
About author:
LIU Xinwu, born in 1989, M. S., assistant engineer. His research interests include big data analysis.Supported by:
摘要:
列车辅助驾驶离不开对列车运行环境的实时检测,而列车运行环境图像存在丰富的小目标。与大中型目标相比,目标占原图比例小于1%的小目标由于分辨率低而存在误检率高、检测精度较差的问题,因此提出一种基于改进YOLOv3的列车运行环境目标检测算法YOLOv3-TOEI (YOLOv3-Train Operating Environment Image)。首先,利用k-means聚类算法优化anchor,从而提高网络的收敛速度;然后,在DarkNet-53中嵌入空洞卷积以增大感受野,并引入稠密卷积网络(DenseNet)获取更丰富的图像底层细节信息;最后,将原始YOLOv3的单向特征融合结构改进为双向自适应特征融合结构,从而实现深浅层特征的有效结合,并提高网络对多尺度目标(特别是小目标)的检测效果。实验结果表明,与原YOLOv3算法相比,YOLOv3-TOEI算法的平均精度均值(mAP)@0.5达到84.5%,提升了12.2%,每秒传输帧数(FPS)为83,拥有更好的列车运行环境图像小目标检测能力。
中图分类号:
梁美佳, 刘昕武, 胡晓鹏. 基于改进YOLOv3的列车运行环境图像小目标检测算法[J]. 计算机应用, 2023, 43(8): 2611-2618.
Meijia LIANG, Xinwu LIU, Xiaopeng HU. Small target detection algorithm for train operating environment image based on improved YOLOv3[J]. Journal of Computer Applications, 2023, 43(8): 2611-2618.
输入特征层 | 操作 | 上/下采样倍数 | 输出特征图 |
---|---|---|---|
256×64×64 | 下采样 | 4 | 256×16×16 |
512×32×32 | 下采样 | 2 | 512×16×16 |
1 024×16×16 | — | — | 1 024×16×16 |
表1 不同输入特征层的具体上/下采样操作
Tab. 1 Specific up-sampling or down-sampling operations for different input feature layers
输入特征层 | 操作 | 上/下采样倍数 | 输出特征图 |
---|---|---|---|
256×64×64 | 下采样 | 4 | 256×16×16 |
512×32×32 | 下采样 | 2 | 512×16×16 |
1 024×16×16 | — | — | 1 024×16×16 |
类别 | 训练集样本数 | 测试集样本数 |
---|---|---|
共计 | 26 164 | 6 491 |
person | 5 861 | 1 413 |
locomotive | 8 141 | 2 141 |
car | 284 | 89 |
signal_light | 5 758 | 1 481 |
truck | 195 | 39 |
sign | 1 138 | 275 |
obstacle | 4 787 | 1 053 |
表2 训练集和测试集信息
Tab. 2 Information of training set and test set
类别 | 训练集样本数 | 测试集样本数 |
---|---|---|
共计 | 26 164 | 6 491 |
person | 5 861 | 1 413 |
locomotive | 8 141 | 2 141 |
car | 284 | 89 |
signal_light | 5 758 | 1 481 |
truck | 195 | 39 |
sign | 1 138 | 275 |
obstacle | 4 787 | 1 053 |
空洞卷积 | 稠密模块 | 特征融合 | k-means | mAP@0.5 | F1 | FPS |
---|---|---|---|---|---|---|
— | — | — | — | 0.753 | 0.777 | 145 |
— | — | — | √ | 0.802 | 0.823 | 145 |
√ | — | — | — | 0.763 | 0.786 | 136 |
√ | √ | — | — | 0.780 | 0.796 | 131 |
— | — | √ | — | 0.779 | 0.798 | 85 |
√ | √ | √ | — | 0.792 | 0.808 | 83 |
√ | √ | √ | √ | 0.845 | 0.861 | 83 |
表3 模块消融实验结果对比
Tab. 3 Comparison of experimental results of module ablation
空洞卷积 | 稠密模块 | 特征融合 | k-means | mAP@0.5 | F1 | FPS |
---|---|---|---|---|---|---|
— | — | — | — | 0.753 | 0.777 | 145 |
— | — | — | √ | 0.802 | 0.823 | 145 |
√ | — | — | — | 0.763 | 0.786 | 136 |
√ | √ | — | — | 0.780 | 0.796 | 131 |
— | — | √ | — | 0.779 | 0.798 | 85 |
√ | √ | √ | — | 0.792 | 0.808 | 83 |
√ | √ | √ | √ | 0.845 | 0.861 | 83 |
类别 | YOLOv3 | YOLOv3-TOEI | 类别 | YOLOv3 | YOLOv3-TOEI |
---|---|---|---|---|---|
person | 0.838 | 0.880 | truck | 0.928 | 0.951 |
locomotive | 0.957 | 0.963 | sign | 0.570 | 0.779 |
car | 0.880 | 0.913 | obstacle | 0.528 | 0.680 |
signal_light | 0.571 | 0.745 |
表4 YOLOv3和YOLOv3-TOEI的各类精度比较
Tab. 4 Comparison of each category AP between YOLOv3 and YOLOv3-TOEI
类别 | YOLOv3 | YOLOv3-TOEI | 类别 | YOLOv3 | YOLOv3-TOEI |
---|---|---|---|---|---|
person | 0.838 | 0.880 | truck | 0.928 | 0.951 |
locomotive | 0.957 | 0.963 | sign | 0.570 | 0.779 |
car | 0.880 | 0.913 | obstacle | 0.528 | 0.680 |
signal_light | 0.571 | 0.745 |
算法 | mAP@0.5 | F1 | FPS |
---|---|---|---|
YOLOv3 | 0.753 | 0.777 | 145 |
YOLOv3-spp | 0.748 | 0.772 | 145 |
YOLOv3-tiny | 0.602 | 0.632 | 431 |
YOLOv4 | 0.775 | 0.710 | 64 |
Faster RCNN | 0.856 | 0.876 | 21 |
SSD | 0.719 | 0.752 | 109 |
YOLOv3-TOEI | 0.845 | 0.861 | 83 |
表5 YOLOv3-TOEI与其他算法的综合比较
Tab. 5 Comprehensive comparison of YOLOv3-TOEI and other algorithms
算法 | mAP@0.5 | F1 | FPS |
---|---|---|---|
YOLOv3 | 0.753 | 0.777 | 145 |
YOLOv3-spp | 0.748 | 0.772 | 145 |
YOLOv3-tiny | 0.602 | 0.632 | 431 |
YOLOv4 | 0.775 | 0.710 | 64 |
Faster RCNN | 0.856 | 0.876 | 21 |
SSD | 0.719 | 0.752 | 109 |
YOLOv3-TOEI | 0.845 | 0.861 | 83 |
1 | 李柯泉,陈燕,刘佳晨,等. 基于深度学习的目标检测算法综述[J]. 计算机程, 2022, 48(7):1-12. 10.19678/j.issn.1000-3428.0062725 |
LI K Q, CHEN Y, LIU J C, et al. Survey of deep learning-based object detection algorithms[J]. Computer Engineering, 2022, 48(7):1-12. 10.19678/j.issn.1000-3428.0062725 | |
2 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014:580-587. 10.1109/cvpr.2014.81 |
3 | GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015:1440-1448. 10.1109/iccv.2015.169 |
4 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015, 1:91-99. |
5 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2022-08-06].. 10.1109/cvpr.2017.690 |
6 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2022-08-06].. |
7 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016:21-37. |
8 | 熊群芳,林军,刘悦,等. 深度学习研究现状及其在轨道交通领域的应用[J]. 控制与信息技术, 2018(2):1-6. |
XIONG Q F, LIN J, LIU Y, et al. Deep learning and its application in the field of rail transit[J]. Control and Information Technology, 2018(2):1-6. | |
9 | WANG H M, PEI H Y, ZHANG J B. Detection of locomotive signal lights and pedestrians on railway tracks using improved YOLOv4[J]. IEEE Access, 2022, 10:15495-15505. 10.1109/access.2022.3148182 |
10 | 王焕民,张建柏,裴华艳,等. 基于MobileNet-SSD的铁路信号灯检测识别[J]. 兰州交通大学学报, 2020, 39(4):66-70. 10.3969/j.issn.1001-4373.2020.04.010 |
WANG H M, ZHANG J B, PEI H Y, et al. Research on railway signal lamp detection based on MobileNet-SSD[J]. Journal of Lanzhou Jiaotong University, 2020, 39(4):66-70. 10.3969/j.issn.1001-4373.2020.04.010 | |
11 | LU Y D, LI J Y, WANG X T. Abnormal detection of track fastener based on improved YOLOV3 algorithm[C]// Proceedings of the 5th International Conference on Mechanical, Control and Computer Engineering. Piscataway: IEEE, 2020: 1826-1831. 10.1109/icmcce51767.2020.00401 |
12 | YE T, WANG B C, SONG P, et al. Automatic railway traffic object detection system using feature fusion refine neural network under shunting mode[J]. Sensors, 2018, 18(6): No.1916. 10.3390/s18061916 |
13 | KARAGIANNIS G, OLSEN S, PEDERSEN K. Deep learning for detection of railway signs and signals[C]// Proceedings of the 2019 Science and Information Conference, AISC 943. Cham: Springer, 2020: 1-15. 10.1007/978-3-030-17795-9_1 |
14 | YE T, ZHANG X, ZHANG Y, et al. Railway traffic object detection using differential feature fusion convolution neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1375-1387. 10.1109/tits.2020.2969993 |
15 | 冯号,黄朝兵,文元桥. 基于改进YOLOv3的遥感图像小目标检测[J]. 计算机应用, 2022, 42(12):3723-3732. |
FENG H, HUANG C B, WEN Y Q. Remote sensing image small target detection based on improved YOLOv3[J]. Journal of Computer Applications, 2022, 42(12):3723-3732. | |
16 | HUANG G, LIU Z, L van der MAATEN, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. 10.1109/cvpr.2017.243 |
17 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. 10.1109/cvpr.2017.106 |
18 | TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787. 10.1109/cvpr42600.2020.01079 |
19 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:7132-7141. 10.1109/cvpr.2018.00745 |
20 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
21 | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. (2016-04-30) [2022-07-21].. 10.1109/cvpr.2017.75 |
22 | 曹帅帅. 基于改进YOLOv3的口罩佩戴检测模型研究[D]. 青岛:青岛大学, 2021:45-52. 10.1109/cisai54367.2021.00044 |
CAO S S. Research on mask wearing detection model based on improved YOLOv3[D]. Qingdao: Qingdao University, 2021:45-52. 10.1109/cisai54367.2021.00044 | |
23 | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768. 10.1109/cvpr.2018.00913 |
24 | GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7029-7038. 10.1109/cvpr.2019.00720 |
[1] | 潘烨新, 杨哲. 基于多级特征双向融合的小目标检测优化模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2871-2877. |
[2] | 赵志强, 马培红, 黑新宏. 基于双重注意力机制的人群计数方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2886-2892. |
[3] | 李烨恒, 罗光圣, 苏前敏. 基于改进YOLOv5的Logo检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2580-2587. |
[4] | 刘瑞华, 郝子赫, 邹洋杨. 基于多层级精细特征融合的步态识别算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2250-2257. |
[5] | 姬张建, 杜娜. 基于改进VariFocalNet的微小目标检测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2200-2207. |
[6] | 黄梦源, 常侃, 凌铭阳, 韦新杰, 覃团发. 基于层间引导的低光照图像渐进增强算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1911-1919. |
[7] | 刘越, 刘芳, 武奥运, 柴秋月, 王天笑. 基于自注意力机制与图卷积的3D目标检测网络[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1972-1977. |
[8] | 李鑫, 孟乔, 皇甫俊逸, 孟令辰. 基于分离式标签协同学习的YOLOv5多属性分类[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1619-1628. |
[9] | 封筠, 毕健康, 霍一儒, 李家宽. 轻量化沥青路面裂缝图像分割网络PIPNet[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1520-1526. |
[10] | 韩贵金, 张馨渊, 张文涛, 黄娅. 基于多特征融合的自监督图像配准算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1597-1604. |
[11] | 李鸿天, 史鑫昊, 潘卫国, 徐成, 徐冰心, 袁家政. 融合多尺度和注意力机制的小样本目标检测[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1437-1444. |
[12] | 李新叶, 侯晔凝, 孔英会, 燕志旗. 结合特征融合与增强注意力的少样本目标检测[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 745-751. |
[13] | 贾宗泽, 高鹏飞, 马应龙, 刘晓峰, 夏海鑫. 基于注意力机制的多特征融合对话行为层次化分类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 715-721. |
[14] | 蒋占军, 吴佰靖, 马龙, 廉敬. 多尺度特征和极化自注意力的Faster-RCNN水漂垃圾识别[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 938-944. |
[15] | 吴宁, 罗杨洋, 许华杰. 基于多尺度特征融合的遥感图像语义分割方法[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 737-744. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||