1 |
《中国脑卒中防治报告》编写组. 《中国脑卒中防治报告2020》概要[J].中国脑血管病杂志,2022,19(2):136-144.
|
|
Report on Stroke Prevention and Treatment in China Writing Group. Brief report on stroke prevention and treatment in China, 2020 [J]. Chinese Journal of Cerebrovascular Diseases, 2022, 19(2): 136-144.
|
2 |
MATHERS C D, BOERMA T, MA FAT D. Global and regional causes of death [J]. British Medical Bulletin, 2009, 92(1): 7-32.
|
3 |
SAVER J L. Time is brain-quantified [J]. Stroke, 2006, 37(1): 263-266.
|
4 |
INAMDAR M A, RAGHAVENDRA U, GUDIGAR A, et al. A review on computer aided diagnosis of acute brain stroke[J]. Sensors, 2021, 21(24): 8507.
|
5 |
PENG J, WANG Y. Medical image segmentation with limited supervision: a review of deep network models[J]. IEEE Access, 2021, 9: 36827-36851.
|
6 |
ALOM M Z, YAKOPCIC C, HASAN M, et al. Recurrent residual U-Net for medical image segmentation[J]. Journal of Medical Imaging, 2019, 6(1): 014006.
|
7 |
LUO X, CHEN J, SONG T, et al. Semi-supervised medical image segmentation through dual-task consistency[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(10): 8801-8809.
|
8 |
FAN D-P, ZHOU T, JI G-P, et al. Inf-Net: automatic COVID-19 lung infection segmentation from CT images[J]. IEEE Transactions on Medical Imaging, 2020, 39(8): 2626-2637.
|
9 |
WANG L, GUO D, WANG G, et al. Annotation-efficient learning for medical image segmentation based on noisy pseudo labels and adversarial learning[J]. IEEE Transactions on Medical Imaging, 2021, 40(10): 2795-2807.
|
10 |
OUYANG C, BIFFI C, CHEN C, et al. Self-supervised learning for few-shot medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2022, 41(7): 1837-1848.
|
11 |
ZHANG Y, LIN X, ZHUANG Y, et al. Harmonizing pathological and normal pixels for pseudo-healthy synthesis[J]. IEEE Transactions on Medical Imaging, 2022, 41(9): 2457-2468.
|
12 |
CUI W, LIU Y, LI Y, et al. Semi-supervised brain lesion segmentation with an adapted mean teacher model[C]// Proceedings of the 26th International Conference on Information Processing in Medical Imaging. Cham:Springer, 2019: 554-565.
|
13 |
VERMA V, KAWAGUCHI K, LAMB A, et al. Interpolation consistency training for semi-supervised learning[J]. Neural Networks, 2022, 145: 90-106.
|
14 |
CHEN X, YUAN Y, ZENG G, et al. Semi-supervised semantic segmentation with cross pseudo supervision[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2021: 2613-2622.
|
15 |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2015: 234-241.
|
16 |
ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856-1867.
|
17 |
ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation [C]// Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2016: 424-432.
|
18 |
YAO H, HU X, LI X. Enhancing pseudo label quality for semi-supervised domain-generalized medical image segmentation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(3): 3099-3107.
|
19 |
WANG X, YUAN Y, GUO D, et al. SSA-Net: spatial self-attention network for COVID-19 pneumonia infection segmentation with semi-supervised few-shot learning[J]. Medical Image Analysis, 2022, 79: 102459.
|
20 |
YU L, WANG S, LI X, et al. Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation[C]// Proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2019: 605-613.
|
21 |
WU Y, GE Z, ZHANG D, et al. Mutual consistency learning for semi-supervised medical image segmentation[J]. Medical Image Analysis, 2022, 81: 102530.
|
22 |
KALLURI T, VARMA G, CHANDRAKER M, et al. Universal semi-supervised semantic segmentation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision. Piscataway:IEEE, 2019: 5259-5270.
|
23 |
LUO X, WANG G, LIAO W, et al. Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency[J]. Medical Image Analysis, 2022, 80: 102517.
|
24 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
|
25 |
OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: learning where to look for the pancreas [EB/OL]. [2023-06-05]. .
|
26 |
A-M RICKMANN, ROY A G, SARASUA I, et al. ‘Project & excite’ modules for segmentation of volumetric medical scans[C]// Proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2019: 39-47.
|
27 |
ZHAO X, QI Z, WANG S, et al. RCPS: rectified contrastive pseudo supervision for semi-supervised medical image segmentation [EB/OL]. [2023-07-18]. .
|
28 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018: 7132-7141.
|
29 |
HERNANDEZ PETZSCHE M R, DE LA ROSA E, HANNING U, et al. ISLES 2022: a multi-center magnetic resonance imaging stroke lesion segmentation dataset[J]. Scientific Data, 2022, 9: 762.
|