《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (9): 2876-2884.DOI: 10.11772/j.issn.1001-9081.2021071305
尹靖涵1,2, 瞿绍军1,2(), 姚泽楷1,2, 胡玄烨1,2, 秦晓雨1,2, 华璞靖1,2
收稿日期:
2021-07-19
修回日期:
2021-09-03
接受日期:
2021-09-14
发布日期:
2022-09-19
出版日期:
2022-09-10
通讯作者:
瞿绍军
作者简介:
尹靖涵(2000—),男,浙江丽水人,主要研究方向:目标检测;基金资助:
Jinghan YIN1,2, Shaojun QU1,2(), Zekai YAO1,2, Xuanye HU1,2, Xiaoyu QIN1,2, Pujing HUA1,2
Received:
2021-07-19
Revised:
2021-09-03
Accepted:
2021-09-14
Online:
2022-09-19
Published:
2022-09-10
Contact:
Shaojun QU
About author:
YIN Jinghan, born in 2000. His research interests include object detection.Supported by:
摘要:
针对雾霾、雨雪等恶劣天气下小型交通标志识别精度低、漏检严重的问题,提出一种基于YOLOv5的雾霾天气下交通标志识别模型。首先,对YOLOv5的结构进行优化,采用逆向思维,通过削减特征金字塔深度、限制最高下采样倍数来解决小目标难以识别的问题,并通过调整残差模块的特征传递深度来抑制背景特征的重复叠加;其次,引入数据增强、K-means先验框、全局非极大值抑制(GNMS)等机制到模型;最后,在中国交通标志数据集TT100K上验证改进YOLOv5模型在面对恶劣天气时的检测能力,并对精度下降最显著的雾霾天气下的交通标志识别展开了重点研究。实验结果表明,改进YOLOv5模型的F1-score达0.921 50,平均精度均值@0.5 (mAP@0.5)达95.3%,平均精度均值@0.5:0.95 (mAP@0.5:0.95)达75.2%,且所提模型在恶劣天气下仍能进行交通标志的高精度识别,每秒检测帧数(FPS)达到50,满足实时检测的需求。
中图分类号:
尹靖涵, 瞿绍军, 姚泽楷, 胡玄烨, 秦晓雨, 华璞靖. 基于YOLOv5的雾霾天气下交通标志识别模型[J]. 计算机应用, 2022, 42(9): 2876-2884.
Jinghan YIN, Shaojun QU, Zekai YAO, Xuanye HU, Xiaoyu QIN, Pujing HUA. Traffic sign recognition model in haze weather based on YOLOv5[J]. Journal of Computer Applications, 2022, 42(9): 2876-2884.
预测值 | 真实值 | |
---|---|---|
Positive | Negative | |
Positive | TP | FP |
Negative | FN | TN |
表1 混淆矩阵
Tab.1 Confusion matrix
预测值 | 真实值 | |
---|---|---|
Positive | Negative | |
Positive | TP | FP |
Negative | FN | TN |
模型 | F1-score | mAP@0.5/% | mAP@0.5:0.95/% | FPS |
---|---|---|---|---|
YOLOv5s | 0.839 26 | 86.5 | 66.4 | 102 |
YOLOv5m | 0.662 71 | 67.5 | 50.4 | 52 |
YOLOv5l | 0.693 99 | 70.6 | 52.7 | 32 |
本文模型 | 0.921 50 | 95.3 | 75.2 | 50 |
表2 不同YOLOv5模型性能对比
Tab.2 Performance comparison of different YOLOv5 models
模型 | F1-score | mAP@0.5/% | mAP@0.5:0.95/% | FPS |
---|---|---|---|---|
YOLOv5s | 0.839 26 | 86.5 | 66.4 | 102 |
YOLOv5m | 0.662 71 | 67.5 | 50.4 | 52 |
YOLOv5l | 0.693 99 | 70.6 | 52.7 | 32 |
本文模型 | 0.921 50 | 95.3 | 75.2 | 50 |
模型 | F1-score | ||
---|---|---|---|
测试集2 | 测试集3 | 测试集4 | |
YOLOv5s | 0.868 50 | 0.844 82 | 0.816 50 |
YOLOv5m | 0.710 32 | 0.662 71 | 0.636 17 |
YOLOv5l | 0.718 13 | 0.677 41 | 0.674 10 |
本文模型 | 0.941 42 | 0.924 97 | 0.914 00 |
表3 不同天气下F1-score对比
Tab.3 F1-score comparison in different weather conditions
模型 | F1-score | ||
---|---|---|---|
测试集2 | 测试集3 | 测试集4 | |
YOLOv5s | 0.868 50 | 0.844 82 | 0.816 50 |
YOLOv5m | 0.710 32 | 0.662 71 | 0.636 17 |
YOLOv5l | 0.718 13 | 0.677 41 | 0.674 10 |
本文模型 | 0.941 42 | 0.924 97 | 0.914 00 |
模型 | mAP@0.5 | ||
---|---|---|---|
测试集2 | 测试集3 | 测试集4 | |
YOLOv5s | 90.6 | 87.9 | 84.1 |
YOLOv5m | 74.9 | 70.0 | 64.0 |
YOLOv5l | 75.5 | 71.5 | 68.6 |
本文模型 | 97.0 | 96.0 | 94.8 |
表4 不同天气下mAP@0.5对比 (%)
Tab.4 mAP@0.5 comparison in different weather conditions
模型 | mAP@0.5 | ||
---|---|---|---|
测试集2 | 测试集3 | 测试集4 | |
YOLOv5s | 90.6 | 87.9 | 84.1 |
YOLOv5m | 74.9 | 70.0 | 64.0 |
YOLOv5l | 75.5 | 71.5 | 68.6 |
本文模型 | 97.0 | 96.0 | 94.8 |
模型 | mAP@0.5:0.95 | ||
---|---|---|---|
测试集2 | 测试集3 | 测试集4 | |
YOLOv5s | 70.2 | 67.4 | 64.7 |
YOLOv5m | 56.3 | 52.4 | 48.0 |
YOLOv5l | 57.1 | 53.3 | 51.3 |
本文模型 | 77.4 | 75.0 | 75.0 |
表5 不同天气下mAP@0.5:0.95对比 (%)
Tab.5 mAP@0.5:0.95 comparison in different weather conditions
模型 | mAP@0.5:0.95 | ||
---|---|---|---|
测试集2 | 测试集3 | 测试集4 | |
YOLOv5s | 70.2 | 67.4 | 64.7 |
YOLOv5m | 56.3 | 52.4 | 48.0 |
YOLOv5l | 57.1 | 53.3 | 51.3 |
本文模型 | 77.4 | 75.0 | 75.0 |
组别 | 滤波器 | F1-score | mAP@0.5/% | mAP@0.5:0.95/% |
---|---|---|---|---|
1 | 无 | 0.914 00 | 94.8 | 75.0 |
2 | 无 | 0.891 12 | 92.9 | 71.1 |
3 | 无 | 0.774 31 | 77.6 | 58.4 |
4 | DCP | 0.771 06 | 80.9 | 60.3 |
5 | MSRCR | 0.819 76 | 83.4 | 63.1 |
6 | HE | 0.746 09 | 78.2 | 57.9 |
7 | AOD-Net | 0.829 19 | 83.6 | 63.1 |
8 | 无 | 0.875 56 | 90.5 | 73.7 |
9 | 无 | 0.854 22 | 87.6 | 70.4 |
表6 多种模型对比
Tab.6 Comparison of several models
组别 | 滤波器 | F1-score | mAP@0.5/% | mAP@0.5:0.95/% |
---|---|---|---|---|
1 | 无 | 0.914 00 | 94.8 | 75.0 |
2 | 无 | 0.891 12 | 92.9 | 71.1 |
3 | 无 | 0.774 31 | 77.6 | 58.4 |
4 | DCP | 0.771 06 | 80.9 | 60.3 |
5 | MSRCR | 0.819 76 | 83.4 | 63.1 |
6 | HE | 0.746 09 | 78.2 | 57.9 |
7 | AOD-Net | 0.829 19 | 83.6 | 63.1 |
8 | 无 | 0.875 56 | 90.5 | 73.7 |
9 | 无 | 0.854 22 | 87.6 | 70.4 |
1 | 张震,程伟伟,吴磊,等. 基于不变矩和SVM的圆形交通标志识别方法研究[J]. 电子测量与仪器学报, 2017, 31(5):773-779. 10.13382/j.jemi.2017.05.017 |
ZHANG Z, CHENG W W, WU L, et al. Study on circular traffic signs recognition method based on invariant moments and SVM[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(5): 773-779. 10.13382/j.jemi.2017.05.017 | |
2 | 蔡俊,赵超,沈晓波,等. SIFT算法在指示类交通标志识别中的应用[J]. 太原学院学报(自然科学版), 2020, 38(4):45-50. 10.14152/j.cnki.2096-191X.2020.04.009 |
CAI J, ZHAO C, SHEN X B, et al. Application of SIFT algorithm in indicating traffic signs recognition[J]. Journal of Taiyuan University (Natural Science Edition), 2020, 38(4): 45-50. 10.14152/j.cnki.2096-191X.2020.04.009 | |
3 | 邓天民,方芳,周臻浩. 基于改进空间金字塔池化卷积神经网络的交通标志识别[J]. 计算机应用, 2020, 40(10):2872-2880. |
DENG T M, FANG F, ZHOU Z H. Traffic sign recognition based on improved convolutional neural network with spatial pyramid pooling[J]. Journal of Computer Applications, 2020, 40(10): 2872-2880. | |
4 | 周建平. 基于数据增强和双模型结构的交通标志检测与识别[D]. 广州:暨南大学, 2020:28-36. |
ZHOU J P. Traffic sign detection and recognition based on data augmentation and dual-model structure[D]. Guangzhou: Jinan University, 2020: 28-36. | |
5 | 赵坤,刘立,孟宇,等. 弱光照条件下交通标志检测与识别[J]. 工程科学学报, 2020, 42(8):1074-1084. |
ZHAO K, LIU L, MENG Y, et al. Traffic signs detection and recognition under low-illumination conditions[J]. Chinese Journal of Engineering, 2020, 42(8): 1074-1084. | |
6 | KOU A L. Detection and recognition of traffic signs based on improved deep learning[J]. International Core Journal of Engineering, 2020, 6(12): 208-213. |
7 | 徐国整,周越,董斌,等. 基于改进Cascade R-CNN的交通标志牌识别[J]. 传感器与微系统, 2021, 40(5):142-145, 153. |
XU G Z, ZHOU Y, DONG B, et al. Traffic signs recognition based on improved Cascade R-CNN[J]. Transducer and Microsystem Technologies, 2021, 40(5): 142-145, 153. | |
8 | 张航. 自然场景下的交通标志识别算法研究[D]. 长沙:中南大学, 2006:53-94. |
ZHANG H. Study on algorithms for detection and recognition of traffic signs from natural scenes[D]. Changsha: Central South University, 2006: 53-94. | |
9 | 张国山,刘振. 雾霾天气下交通标志的检测与识别[J]. 天津工业大学学报, 2015, 34(5):71-75. 10.3969/j.issn.1671-024x.2015.05.015 |
ZHANG G S, LIU Z. Traffic sign detection and recognition under haze weather[J]. Journal of Tianjin Polytechnic University, 2015, 34(5): 71-75. 10.3969/j.issn.1671-024x.2015.05.015 | |
10 | 陈琼红,冀杰,种一帆,等. 基于AOD-Net和SSD的雾天车辆和行人检测[J]. 重庆理工大学学报(自然科学), 2021, 35(5):108-117. |
CHEN Q H, JI J, CHONG Y F, et al. Vehicle and pedestrian detection based on AOD-Net and SSD algorithm in hazy environment[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(5): 108-117. | |
11 | 陈秀新,叶洋,于重重,等. 基于深度学习的雾霾天气下交通标志识别[J]. 重庆交通大学学报(自然科学版), 2020, 39(12):1-5. 10.3969/j.issn.1674-0696.2020.12.01 |
CHEN X X, YE Y, YU C C, et al. Identification of traffic signs in haze weather based on deep learning[J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(12): 1-5. 10.3969/j.issn.1674-0696.2020.12.01 | |
12 | 周小龙,陈小佳,陈胜勇,等. 弱监督学习下的目标检测算法综述[J]. 计算机科学, 2019, 46(11): 49-57. 10.11896/jsjkx.181001899 |
ZHOU X L, CHEN X J, CHEN S Y, et al. Weakly supervised learning-based object detection: a survey[J]. Computer Science, 2019, 46(11): 49-57. 10.11896/jsjkx.181001899 | |
13 | JIAO L C, ZHANG F, LIU F, et al. A survey of deep learning-based object detection[J]. IEEE Access, 2019, 7: 128837-128868. 10.1109/access.2019.2939201 |
14 | 张泽苗,霍欢,赵逢禹. 深层卷积神经网络的目标检测算法综述[J]. 小型微型计算机系统, 2019, 40(9): 1825-1831. 10.3969/j.issn.1000-1220.2019.09.004 |
ZHANG Z M, HUO H, ZHAO F Y. Survey of object detection algorithm based on deep convolutional neural networks[J]. Journal of Chinese Computer Systems, 2019, 40(9): 1825-1831. 10.3969/j.issn.1000-1220.2019.09.004 | |
15 | 南晓虎,丁雷. 深度学习的典型目标检测算法综述[J]. 计算机应用研究, 2020, 37(S2): 15-21. |
NAN X H, DING L. Review of typical target detection algorithms for deep learning[J]. Application Research of Computers, 2020, 37(S2):15-21. | |
16 | 赵永强,饶元,董世鹏,等. 深度学习目标检测方法综述[J]. 中国图象图形学报, 2020, 25(4): 629-654. 10.11834/jig.190307 |
ZHAO Y Q, RAO Y, DONG S P, et al. Survey on deep learning object detection[J]. Journal of Image and Graphics, 2020, 25(4): 629-654. 10.11834/jig.190307 | |
17 | 陈飞,刘云鹏,李思远. 复杂环境下的交通标志检测与识别方法综述[J]. 计算机工程与应用,2021, 57(16): 65-73. |
CHEN F, LIU Y P, LI S Y. Survey of traffic sign detection and recognition methods in complex environment[J]. Computer Engineering and Applications, 2021, 57(16): 65-73. | |
18 | 廖璐明,张伟,王亚刚. 基于注意力机制的交通标志识别[J]. 小型微型计算机系统, 2021, 42(6):1262-1266. 10.3969/j.issn.1000-1220.2021.06.021 |
LIAO L M, ZHANG W, WANG Y G. Traffic sign recognition based on attention mechanism[J]. Journal of Chinese Computer Systems, 2021, 42(6): 1262-1266. 10.3969/j.issn.1000-1220.2021.06.021 | |
19 | 林雪,张志佳,刘立强,等. 面向城市路况交通标志识别的VGG网络剪枝与量化[J]. 小型微型计算机系统, 2021, 42(6):1293-1296. 10.3969/j.issn.1000-1220.2021.06.026 |
LIN X, ZHANG Z J, LIU L Q, et al. VGG network pruning and quantification for traffic sign recognition of urban road condition[J]. Journal of Chinese Computer Systems, 2021, 42(6): 1293-1296. 10.3969/j.issn.1000-1220.2021.06.026 | |
20 | 江金洪,鲍胜利,史文旭,等. 基于YOLO v3算法改进的交通标志识别算法[J]. 计算机应用, 2020, 40(8):2472-2478. |
JIANG J H, BAO S L, SHI W X, et al. Improved traffic sign recognition algorithm based on YOLO v3 algorithm[J]. Journal of Computer Applications, 2020, 40(8): 2472-2478. | |
21 | SHEN L L, YOU L, PENG B, et al. Group multi-scale attention pyramid network for traffic sign detection[J]. Neurocomputing, 2021, 452: 1-14. 10.1016/j.neucom.2021.04.083 |
22 | XIAO Q Y, YU W W. Traffic sign detection in complex environment based on improved YOLOv3[J]. International Core Journal of Engineering, 2021, 7(3): 102-108. |
23 | YAO Z X, SONG X P, ZHAO L, et al. Real-time method for traffic sign detection and recognition based on YOLOv3-tiny with multiscale feature extraction[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(7): 1978-1991. 10.1177/0954407020980559 |
24 | 陈名松,吴冉冉,张泽功,等. 基于改进CapsNet的交通标志分类模型[J]. 计算机应用研究, 2020, 37(S2):367-368, 371. |
CHEN M S, WU R R, ZHANG Z G, et al. Traffic sign identification based on improved CapsNet[J]. Application Research of Computers, 2020, 37(S2): 367-368, 371. | |
25 | 孙伟,杜宏吉,张小瑞,等. 基于CNN多层特征和ELM的交通标志识别[J]. 电子科技大学学报, 2018, 47(3):343-349. 10.3969/j.issn.1001-0548.2018.03.004 |
SUN W, DU H J, ZHANG X R, et al. Traffic sign recognition method based on multi-layer feature CNN and extreme learning machine[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(3): 343-349. 10.3969/j.issn.1001-0548.2018.03.004 | |
26 | 王子键. 基于SSD模型的交通标志识别[D]. 长春:吉林大学, 2020:21-31. |
WANG Z J. Recognition of traffic signs based on SSD model[D]. Changchun: Jilin University, 2020: 21-31. | |
27 | XU M D, ZHANG Z, HU H, et al. End-to-end semi-supervised object detection with soft teacher[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3040-3049. 10.1109/iccv48922.2021.00305 |
28 | ZHANG H, WU C R, ZHANG Z Y, et al. ResNeSt: split-attention networks[EB/OL]. (2020-12-30) [2021-05-23].. 10.1109/cvprw56347.2022.00309 |
29 | LI L F, WANG Y R. Improved LeNet-5 convolutional neural network traffic sign recognition[J]. International Core Journal of Engineering, 2021, 7(4): 114-121. |
30 | TAI S K, DEWI C, CHEN R C, et al. Deep learning for traffic sign recognition based on spatial pyramid pooling with scale analysis[J]. Applied Sciences, 2020, 10(19): No.6997. 10.3390/app10196997 |
31 | ZHOU K, ZHAN Y F, FU D M. Learning region-based attention network for traffic sign recognition[J]. Sensor, 2021, 21(3): No.686. 10.3390/s21030686 |
[1] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[2] | 王熙源, 张战成, 徐少康, 张宝成, 罗晓清, 胡伏原. 面向手术导航3D/2D配准的无监督跨域迁移网络[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2911-2918. |
[3] | 潘烨新, 杨哲. 基于多级特征双向融合的小目标检测优化模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2871-2877. |
[4] | 李顺勇, 李师毅, 胥瑞, 赵兴旺. 基于自注意力融合的不完整多视图聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2696-2703. |
[5] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. |
[6] | 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2551-2557. |
[7] | 顾焰杰, 张英俊, 刘晓倩, 周围, 孙威. 基于时空多图融合的交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2618-2625. |
[8] | 石乾宏, 杨燕, 江永全, 欧阳小草, 范武波, 陈强, 姜涛, 李媛. 面向空气质量预测的多粒度突变拟合网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2643-2650. |
[9] | 李烨恒, 罗光圣, 苏前敏. 基于改进YOLOv5的Logo检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2580-2587. |
[10] | 张英俊, 李牛牛, 谢斌红, 张睿, 陆望东. 课程学习指导下的半监督目标检测框架[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2326-2333. |
[11] | 赵亦群, 张志禹, 董雪. 基于密集残差物理信息神经网络的各向异性旅行时计算方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2310-2318. |
[12] | 徐松, 张文博, 王一帆. 基于时空信息的轻量视频显著性目标检测网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2192-2199. |
[13] | 孙逊, 冯睿锋, 陈彦如. 基于深度与实例分割融合的单目3D目标检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2208-2215. |
[14] | 吴筝, 程志友, 汪真天, 汪传建, 王胜, 许辉. 基于深度学习的患者麻醉复苏过程中的头部运动幅度分类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2258-2263. |
[15] | 姬张建, 杜娜. 基于改进VariFocalNet的微小目标检测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2200-2207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||