| 1 | YANG Y, WANG H. Multi-view clustering: a survey [J]. Big Data Mining and Analytics, 2018, 1(2): 83-107. | 
																													
																						| 2 | 乔宇鑫, 葛洪伟, 宋鹏. 全局与局部结构学习的多视图子空间聚类算法[J]. 计算机科学与探索, 2023, 17(9): 2107-2117. | 
																													
																						|  | QIAO Y X, GE H W, SONG P. Global and local structure learning for multi-view subspace clustering [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2107-2117. | 
																													
																						| 3 | NIE F, LI J, LI X. Self-weighted multiview clustering with multiple graphs[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 2564-2570. | 
																													
																						| 4 | YU S, TRANCHEVENT L, LIU X, et al. Optimized data fusion for kernel k-means clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(5): 1031-1039. | 
																													
																						| 5 | ZHANG C, LIU Y, FU H. AE2-Nets: autoencoder in autoencoder networks[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2572-2580. | 
																													
																						| 6 | LIN Y, GOU Y, LIU Z, et al. COMPLETER: incomplete multi-view clustering via contrastive prediction[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 11169-11178. | 
																													
																						| 7 | KE G, HONG Z, ZENG Z, et al. CONAN: contrastive fusion networks for multi-view clustering[C]// Proceedings of the 2021 IEEE International Conference on Big Data. Piscataway: IEEE, 2021: 653-660. | 
																													
																						| 8 | FAN S, WANG X, SHI C, et al. One2Multi graph autoencoder for multi-view graph clustering[C]// Proceedings of the Web Conference 2020. New York: ACM, 2020: 3070-3076. | 
																													
																						| 9 | WANG Y, CHANG D, FU Z, et al. Consistent multiple graph embedding for multi-view clustering[J]. IEEE Transactions on Multimedia, 2023, 25: 1008-1018. | 
																													
																						| 10 | 杜国王, 周丽华, 王丽珍, 等. 基于两级权重的多视角聚类[J]. 计算机研究与发展, 2022, 59(4): 907-921. | 
																													
																						|  | DU G W, ZHOU L H, WANG L Z, et al. Multi-view clustering based on two-level weights [J]. Journal of Computer Research and Development, 2022, 59(4): 907-921. | 
																													
																						| 11 | 谢胜利, 陈泓达, 高军礼, 等. 基于分布对齐变分自编码器的深度多视图聚类[J]. 计算机学报, 2023, 46(5): 945-959. | 
																													
																						|  | XIE S L, CHEN H D, GAO J L, et al. Deep multi-view clustering based on distribution aligned variational autoencoder [J]. Chinese Journal of Computers, 2023, 46(5): 945-959. | 
																													
																						| 12 | ABAVISANI M, PATEL V M. Deep multimodal subspace clustering networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(6): 1601-1614. | 
																													
																						| 13 | LI Z, WANG Q, TAO Z, et al. Deep adversarial multi-view clustering network[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 2952-2958. | 
																													
																						| 14 | XU J, REN Y, LI G, et al. Deep embedded multi-view clustering with collaborative training[J]. Information Sciences, 2021, 573: 279-290. | 
																													
																						| 15 | LIU L, KANG Z, RUAN J, et al. Multilayer graph contrastive clustering network[J]. Information Sciences, 2022, 613: 256-267. | 
																													
																						| 16 | KULATILLEKE G K, PORTMANN M, CHANDRA S S. SCGC: self-supervised contrastive graph clustering [EB/OL]. (2022-04-27)[2023-10-01]. . | 
																													
																						| 17 | VELIČKOVIĆ P, FEDUS W, HAMILTON W L, et al. Deep graph Infomax [EB/OL]. (2018-12-21)[2023-10-01]. . | 
																													
																						| 18 | XU D, CHENG W, LUO D, et al. InfoGCL: information-aware graph contrastive learning[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. [S.l.]: Neural Information Processing Systems Foundation, 2021: 30414-30425. | 
																													
																						| 19 | JING B, PARK C, TONG H. HDMI: high-order deep multiplex Infomax[C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 2414-2424. | 
																													
																						| 20 | ZHU Y, XU Y, YU F, et al. Deep graph contrastive representation learning [EB/OL]. (2020-07-13)[2023-10-01]. . | 
																													
																						| 21 | XU J, TANG H, REN Y, et al. Multi-level feature learning for contrastive multi-view clustering[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 16030-16039. | 
																													
																						| 22 | PAN E, KANG Z. Multi-view contrastive graph clustering[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. New York: ACM, 2024: 2148-2159. | 
																													
																						| 23 | XIE J, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 478-487. | 
																													
																						| 24 | TU W, ZHOU S, LIU X, et al. Deep fusion clustering network[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2021: 9978-9987. | 
																													
																						| 25 | ZHANG C, HU Q, FU H, et al. Latent multi-view subspace clustering[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4333-4341. | 
																													
																						| 26 | MI Y, DAI J, REN Z, et al. One-stage multi-view clustering with hierarchical attributes extraction[J]. Cognitive Computation, 2023, 15: 552-564. | 
																													
																						| 27 | XU J, REN Y, TANG H, et al. Self-supervised discriminative feature learning for deep multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(7): 7470-7482. | 
																													
																						| 28 | LI R, ZHANG C, FU H, et al. Reciprocal multi-layer subspace learning for multi-view clustering[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8171-8179. | 
																													
																						| 29 | WANG H, YANG Y, LIU B. GMC: graph-based multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 32(6): 1116-1129. | 
																													
																						| 30 | TROSTEN D J, LØKSE S, JENSSEN R, et al. Reconsidering representation alignment for multi-view clustering[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1255-1265. | 
																													
																						| 31 | LIN Z, KANG Z, ZHANG L, et al. Multi-view attributed graph clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(2): 1872-1880. | 
																													
																						| 32 | VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. |