| 1 | 
																						 
											 蒋晨,张韵,江海涛,等. SPHC热轧带钢表面氧化铁皮缺陷观察与分析[J]. 天津冶金, 2022(1): 58-62.
											 											 | 
										
																													
																						| 2 | 
																						 
											 付光,焦会立,吴耐,等. 热轧带钢表面缺陷自动判定系统及其应用[J]. 轧钢, 2023, 40(3): 97-102.
											 											 | 
										
																													
																						| 3 | 
																						 
											 张洪涛,段发阶,丁克勤,等. 带钢表面缺陷视觉检测系统关键技术研究[J]. 计量学报, 2007, 28(3): 216-219.
											 											 | 
										
																													
																						| 4 | 
																						 
											 崔庆胜,尹海潮,周婷婷,等. 红外测宽技术及其在热轧带钢宽度检测中的应用[J]. 仪表技术与传感器, 2009(1): 43-44, 52.
											 											 | 
										
																													
																						| 5 | 
																						 
											 许德刚,王露,李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8): 10-25.
											 											 | 
										
																													
																						| 6 | 
																						 
											 GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
											 											 | 
										
																													
																						| 7 | 
																						 
											 GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
											 											 | 
										
																													
																						| 8 | 
																						 
											 REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
											 											 | 
										
																													
																						| 9 | 
																						 
											 CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162.
											 											 | 
										
																													
																						| 10 | 
																						 
											 王子琦,管振玉,朱轶昇,等. 基于改进级联RCNN的遥感图像目标检测[J]. 计算机工程与设计, 2023, 44(1): 194-202.
											 											 | 
										
																													
																						| 11 | 
																						 
											 陆尧,薛林,王云森,等. 基于Cascade RCNN的热轧带钢表面缺陷检测[J]. 仪表技术与传感器, 2023(8): 101-106.
											 											 | 
										
																													
																						| 12 | 
																						 
											 TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9626-9635.
											 											 | 
										
																													
																						| 13 | 
																						 
											 ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 2778-2788.
											 											 | 
										
																													
																						| 14 | 
																						 
											 LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37.
											 											 | 
										
																													
																						| 15 | 
																						 
											 鞠默然,罗海波,王仲博,等. 改进的YOLO V3算法及其在小目标检测中的应用[J]. 光学学报, 2019, 39(7): No.0715004.
											 											 | 
										
																													
																						| 16 | 
																						 
											 邱天衡,王玲,王鹏,等. 基于改进YOLOv5的目标检测算法研究[J]. 计算机工程与应用, 2022, 58(13):63-73.
											 											 | 
										
																													
																						| 17 | 
																						 
											 李维刚,叶欣,赵云涛,等. 基于改进YOLOv3算法的带钢表面缺陷检测[J]. 电子学报, 2020, 48(7):1284-1292.
											 											 | 
										
																													
																						| 18 | 
																						 
											 卢俊哲,张铖怡,刘世鹏,等. 面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO[J]. 计算机工程与应用, 2023, 59(15):318-328.
											 											 | 
										
																													
																						| 19 | 
																						 
											 马燕婷,赵红东,阎超,等. 改进YOLOv5网络的带钢表面缺陷检测方法[J]. 电子测量与仪器学报, 2022, 36(8): 150-157.
											 											 | 
										
																													
																						| 20 | 
																						 
											 黄健,张钢. 深度卷积神经网络的目标检测算法综述[J]. 计算机工程与应用, 2020, 56(17): 12-23.
											 											 | 
										
																													
																						| 21 | 
																						 
											 LIU Z, GAO Y, DU Q, et al. YOLO-extract: improved YOLOv5 for aircraft object detection in remote sensing images[J]. IEEE Access, 2023, 11: 1742-1751.
											 											 | 
										
																													
																						| 22 | 
																						 
											 XU R, LIN H, LU K, et al. A forest fire detection system based on ensemble learning [J]. Forests, 2021, 12(2): No.217.
											 											 | 
										
																													
																						| 23 | 
																						 
											 ZHANG T, ZHANG Y, XIN M, et al. A light-weight network for small insulator and defect detection using UAV imaging based on improved YOLOv5[J]. Sensors, 2023, 23(11): No.5249.
											 											 | 
										
																													
																						| 24 | 
																						 
											 FAN Y, LI Y, SHI Y, et al. Application of YOLOv5 neural network based on improved attention mechanism in recognition of Thangka image defects[J]. KSII Transactions on Internet and Information Systems, 2022, 16(1): 245-265.
											 											 | 
										
																													
																						| 25 | 
																						 
											 杜紫薇,周恒,李承阳,等. 面向深度卷积神经网络的小目标检测算法综述[J]. 计算机科学, 2022, 49(12):205-218.
											 											 | 
										
																													
																						| 26 | 
																						 
											 HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
											 											 | 
										
																													
																						| 27 | 
																						 
											 HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586.
											 											 | 
										
																													
																						| 28 | 
																						 
											 WANG C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2023: 51094-51112.
											 											 | 
										
																													
																						| 29 | 
																						 
											 GUO Y, YIN X, ZHAO X, et al. Hyperspectral image classification with SVM and guided filter[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019: No.56.
											 											 | 
										
																													
																						| 30 | 
																						 
											 JARDIM S, ANTÓNIO J, MORA C. Graphical image region extraction with K-Means clustering and watershed[J]. Journal of Imaging, 2022, 8(6): No.163.
											 											 | 
										
																													
																						| 31 | 
																						 
											 WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
											 											 |