《计算机应用》唯一官方网站

• •    下一篇

基于潜在特征增强进行解耦的三维人脸生成方法

梁瑾裕1,高宏娟2,杜晓飞2   

  1. 1. 宁夏大学信息工程学院
    2. 宁夏大学
  • 收稿日期:2025-01-15 修回日期:2025-03-20 发布日期:2025-04-27 出版日期:2025-04-27
  • 通讯作者: 梁瑾裕
  • 基金资助:
    宁夏回族自治区重点研发项目

3D face generation method based on latent feature enhanced for disentanglement

  • Received:2025-01-15 Revised:2025-03-20 Online:2025-04-27 Published:2025-04-27
  • Supported by:
    Key Research and Development Projects of Ningxia Hui Autonomous Region

摘要: 针对现有三维人脸生成方法中潜在特征解释性不足、解耦能力有限以及身份一致性不佳等问题,提出了一种基于潜在特征增强的三维人脸生成方法(LFED-VAE)。首先,采用层次聚类技术构建向量离散化模块,以促进潜在特征对先验知识的吸收,提升解耦性能;其次,设计了位置注意力模块,通过逐元素求和操作,选择性整合潜在特征的位置信息,确保生成人脸的身份一致性;最后,结合先验知识与位置信息,采用最大归一化技术,增强潜在特征在人脸生成过程中的可解释性。实验结果表明,所提方法在潜在特征解耦指标变异可预测性(VP)上的精度达到95.96%,与小批次特征交换解纠缠方法(SD-VAE)、局部特征投影解纠缠方法(LED-VAE)和球谐函数局部特征投影方法(SHLED-VAE)相比,分别提升15.25、14.62和12.75个百分点,所提方法在保持良好的表示与重建能力的同时,解耦性能大幅提升。

关键词: 三维人脸生成, 潜变量解耦, 位置注意力, 向量离散化, 特征融合

Abstract: Abstract: Aiming at the problem of insufficient interpretability of latent features, limited disentanglement capability, and poor identity consistency in existing 3D face generation methods, a Latent Feature Enhanced for Disentanglement Variational Auto-Encoder (LFED-VAE) was proposed. Firstly, the hierarchical clustering technique was used to construct a vector discretization module to promote the potential features to absorb prior knowledge and improve the decoupling performance. Secondly, a location attention module was designed to selectively integrate the location information of potential features through element-by-element summation operation to ensure the identity consistency of generated faces. Finally, combining prior knowledge and location information, the maximum normalization technique was used to enhance the interpretability of potential features in face generation. The experimental results demonstrate that the proposed method achieves an accuracy of 95.96% in the latent feature disentanglement metric of Variability Predictability (VP). Compared with the Swap Disentangled Variational Auto-Encoder (SD-VAE), the Local Eigenprojection Disentangled Variational Auto-Encoder (LED-VAE), and the Spherical Harmonic Local Eigenprojection Disentangled Variational Auto-Encoder (SHLED-VAE), the proposed method shows improvements of 15.25, 14.62, and 12.75 percentage points, respectively. The proposed method enhances disentanglement performance while maintaining good representation and reconstruction capabilities.

Key words: 3D face generation, latent disentanglement, positional attention, vector discretization, feature fusion

中图分类号: