1 |
刘春磊,陈天恩,王聪,等. 小样本目标检测研究综述[J]. 计算机科学与探索, 2023, 17(1):53-73.
|
|
LIU C L, CHEN T E, WANG C, et al. Survey of few-shot object detection[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1):53-73.
|
2 |
SAM D B, SAJJAN N N, BABU R V, et al. Divide and grow: capturing huge diversity in crowd images with incrementally growing CNN[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:3618-3626.
|
3 |
MUNDHENK T N, KONJEVOD G, SAKLA W A, et al. A large contextual dataset for classification,detection and counting of cars with deep learning[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9907. Cham: Springer, 2016:785-800.
|
4 |
ARTETA C, LEMPITSKY V, ZISSERMAN A. Counting in the wild[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9911. Cham: Springer, 2016: 483-498.
|
5 |
XIE W, NOBLE J A, ZISSERMAN A. Microscopy cell counting and detection with fully convolutional regression networks[J]. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2018, 6(3): 283-292.
|
6 |
RAHNEMOONFAR M, SHEPPARD C. Deep count: fruit counting based on deep simulated learning[J]. Sensors, 2017, 17(4): No.905.
|
7 |
赵凯琳,靳小龙,王元卓. 小样本学习研究综述[J]. 软件学报, 2021, 32(2):349-369.
|
|
ZHAO K L, JIN X L, WANG Y Z. Survey on few-shot learning[J]. Journal of Software, 2021, 32(2):349-369.
|
8 |
YANG S D, SU H T, HSU W H, et al. Class-agnostic few-shot object counting[C]// Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 870-878.
|
9 |
RANJAN V, SHARMA U, NGUYEN T, et al. Learning to count everything[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 3393-3402.
|
10 |
ZHANG Y, ZHOU D, CHEN S, et al. Single-image crowd counting via multi-column convolutional neural network[C]// Proceedings of the 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 589-597.
|
11 |
HSIEH M R, LIN Y L, HSU W H. Drone-based object counting by spatially regularized regional proposal network[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4145-4153.
|
12 |
KIM T, PAIK J. Intelligent video surveillance with abandoned object detection and multiple pedestrian counting[C]// Proceedings of the SPIE 7542, Multimedia on Mobile Devices 2010. Bellingham, WA: SPIE, 2010: No.75420K.
|
13 |
ATKINS D C, GALLOP R J. Rethinking how family researchers model infrequent outcomes: a tutorial on count regression and zero-inflated models[J]. Journal of Family Psychology, 2007, 21(4): 726-735.
|
14 |
OÑORO-RUBIO D, LÓPEZ-SASTRE R J. Towards perspective-free object counting with deep learning[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9911. Cham: Springer, 2016: 615-629.
|
15 |
LU E, XIE W, ZISSERMAN. Class-agnostic counting[C]// Proceedings of the 2018 Asian Conference on Computer Vision, LNCS 11363. Cham: Springer, 2019:669-684.
|
16 |
SHI M, LU H, FENG C, et al. Represent, compare, and learn: a similarity-aware framework for class-agnostic counting[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Piscataway: IEEE, 2022: 9529-9538.
|
17 |
YOU Z, YANG K, LUO W, et al. Few-shot object counting with similarity-aware feature enhancement[C]// Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 6304-6313.
|
18 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE International Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
|
19 |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239.
|
20 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
|
21 |
VALMADRE J, BERTINETTO L, HENRIQUES J, et al. End-to-end representation learning for correlation filter based tracking[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5000-5008.
|
22 |
WANG Q, ZHANG L, BERTINETTO L, et al. Fast online object tracking and segmentation: a unifying approach[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:1328-1338.
|
23 |
KANG B, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8419-8428.
|
24 |
FAN Q, ZHUO W, TANG C K, et al. Few-shot object detection with attention-RPN and multi-relation detector[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4012-4021.
|
25 |
FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1126-1135.
|