| 1 | 范怡帆,邹博伟,徐庆婷,等. 常识问答研究综述[J]. 软件学报, 2024, 35(1): 236-265. | 
																													
																						|  | FAN Y F, ZOU B W, XU Q T, et al. Survey on commonsense question answering [J]. Journal of Software, 2024, 35(1): 236-265. | 
																													
																						| 2 | LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach [EB/OL]. [2023-11-20]. . | 
																													
																						| 3 | RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners [EB/OL]. [2023-11-22]. . | 
																													
																						| 4 | LIN B Y, CHEN X, CHEN J, et al. KagNet: knowledge-aware graph networks for commonsense reasoning [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 2829-2839. | 
																													
																						| 5 | FENG Y, CHEN X, LIN B Y, et al. Scalable multi-hop relational reasoning for knowledge-aware question answering [C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 1295-1309. | 
																													
																						| 6 | FELLBAUM C. WordNet: an electronic lexical database [M]. Cambridge: MIT Press, 1998. | 
																													
																						| 7 | BAKER C F, FILLMORE C J, LOWE J B. The Berkeley FrameNet project [C]// Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, Volume 1. New Brunswick, NJ: ACL, 1998: 86-90. | 
																													
																						| 8 | VRANDEČIĆ D, KRÖTZSCH M. Wikidata: a free collaborative knowledgebase [J]. Communications of the ACM, 2014, 57(10): 78-85. | 
																													
																						| 9 | PELLISSIER TANON T, WEIKUM G, SUCHANEK F. YAGO 4: a reason-able knowledge base [C]// Proceedings of the 2020 European Semantic Web Conference, LNCS 12123. Cham: Springer, 2020: 583-596. | 
																													
																						| 10 | SAP M, LE BRAS R, ALLAWAY E, et al. ATOMIC: an atlas of machine commonsense for if-then reasoning [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 3027-3035. | 
																													
																						| 11 | KRISHNA R, ZHU Y, GROTH O, et al. Visual Genome: connecting language and vision using crowdsourced dense image annotations [J]. International Journal of Computer Vision, 2017, 123(1): 32-73. | 
																													
																						| 12 | ILIEVSKI F, SZEKELY P, ZHANG B. CSKG: the commonsense knowledge graph [C]// Proceedings of the 2021 European Semantic Web Conference, LNCS 12731. Cham: Springer, 2021: 680-696. | 
																													
																						| 13 | SPEER R, CHIN J, HAVASI C. ConceptNet 5.5: an open multilingual graph of general knowledge [C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 4444-4451. | 
																													
																						| 14 | TAN H, BANSAL M. LXMERT: learning cross-modality encoder representations from Transformers [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 5100-5111. | 
																													
																						| 15 | LU J, BATRA D, PARIKH D, et al. ViLBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 13-23. | 
																													
																						| 16 | RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision [C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 8748-8763. | 
																													
																						| 17 | LI J, LI D, XIONG C, et al. BLIP: bootstrapping language-image pre-training for unified vision-language understanding and generation [C]// Proceedings of the 39th International Conference on Machine Learning. New York: JMLR.org, 2022: 12888-12900. | 
																													
																						| 18 | YASUNAGA M, REN H, BOSSELUT A, et al. QA-GNN: reasoning with language models and knowledge graphs for question answering [C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 535-546. | 
																													
																						| 19 | ZHANG X, BOSSELUT A, YASUNAGA M, et al. GreaseLM: graph reasoning enhanced language models for question answering[EB/OL]. [2023-10-08]. . | 
																													
																						| 20 | WANG Y, ZHANG H, LIANG J, et al. Dynamic heterogeneous-graph reasoning with language models and knowledge representation learning for commonsense question answering [C]// Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2023: 14048-14063. | 
																													
																						| 21 | XU Y, ZHU C, XU R, et al. Fusing context into knowledge graph for commonsense question answering [C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 1201-1207. | 
																													
																						| 22 | XU Y, ZHU C, WANG S, et al. Human parity on CommonSenseQA: augmenting self-attention with external attention [C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence. California: IJCAI.org, 2022: 2762-2768. | 
																													
																						| 23 | CHEN Q, XU G, YAN M, et al. Distinguish before answer: generating contrastive explanation as knowledge for commonsense question answering [C]// Findings of the Association for Computational Linguistics: ACL 2023. Stroudsburg: ACL, 2023: 13207-13224. | 
																													
																						| 24 | LIN J. ALBERT + KCR(knowledge chosen by relations) [EB/OL]. [2023-07-20]. . | 
																													
																						| 25 | LI G, GAN Y, WU H, et al. Cross-modal attentional context learning for RGB-D object detection [J]. IEEE Transactions on Image Processing, 2019, 28(4): 1591-1601. | 
																													
																						| 26 | MIHAYLOV T, CLARK P, KHOT T, et al. Can a suit of armor conduct electricity? a new dataset for open book question answering[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 2381-2391. | 
																													
																						| 27 | LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization [EB/OL]. [2023-11-14]. . | 
																													
																						| 28 | SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks [C]// Proceedings of the 2018 European Semantic Web Conference, LNCS 10843. Cham: Springer, 2018: 593-607. | 
																													
																						| 29 | BIAN N, HAN X, SUN L, et al. ChatGPT is a knowledgeable but inexperienced solver: an investigation of commonsense problem in large language models [C]// Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation. [S.l.]: ELRA Language Resources Association, 2024: 3098-3110. |