《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (1): 136-143.DOI: 10.11772/j.issn.1001-9081.2024010044
收稿日期:
2024-01-17
修回日期:
2024-03-27
接受日期:
2024-03-27
发布日期:
2024-05-09
出版日期:
2025-01-10
通讯作者:
谷晶中
作者简介:
朱亮(1987—),男,河南焦作人,副教授,博士,主要研究方向:智能推荐、隐私保护;基金资助:
Liang ZHU1, Jingzhe MU1, Hongqiang ZUO2, Jingzhong GU2(), Fubao ZHU1
Received:
2024-01-17
Revised:
2024-03-27
Accepted:
2024-03-27
Online:
2024-05-09
Published:
2025-01-10
Contact:
Jingzhong GU
About author:
ZHU Liang, born in 1987, Ph. D., associate professor. His research interests include smart recommendation, privacy protection.Supported by:
摘要:
传统的位置服务推荐方案未考虑用户偏好及潜在社交关系等问题,导致推荐结果无法满足用户的个性化需求。图神经网络(GNN)凭借较好的图结构数据处理能力,被广泛用于位置推荐领域;然而,此前研究里中心化的数据范式容易造成位置隐私泄露的问题。因此,提出一种基于联邦图神经网络的位置隐私保护推荐方案(FedGNN-LPR)。首先,通过图注意力网络学习用户的社交关系嵌入和兴趣点(POI)嵌入;其次,建立基于POI的伪标签标注模型预测用户对未知位置的访问次数,以保护用户隐私并缓解冷启动问题;最后,提出基于差分隐私的聚类联邦学习策略保护客户端的交互数据并解决数据异质性问题。在两个公开的真实数据集上进行实验的结果表明,在平均绝对值误差(MAE)和均方根误差(RMSE)方面,所提方案比联邦平均(FedAvg)算法分别降低了7.89%和9.29%,比FL+HC算法分别降低了2.32%和2.75%;并且,所提方案在联邦学习位置推荐上展现出更好的性能。因此,FedGNN-LPR不仅能保护用户位置隐私,而且提高了位置推荐性能。
中图分类号:
朱亮, 慕京哲, 左洪强, 谷晶中, 朱付保. 基于联邦图神经网络的位置隐私保护推荐方案[J]. 计算机应用, 2025, 45(1): 136-143.
Liang ZHU, Jingzhe MU, Hongqiang ZUO, Jingzhong GU, Fubao ZHU. Location privacy-preserving recommendation scheme based on federated graph neural network[J]. Journal of Computer Applications, 2025, 45(1): 136-143.
1 | YADAV V K, ANDOLA N, VERMA S, et al. P2LBS: privacy provisioning in location-based services [J]. IEEE Transactions on Services Computing, 2023, 16(1): 466-477. |
2 | XIONG X, QIAO S, HAN N, et al. Affective impression: sentiment-awareness POI suggestion via embedding in heterogeneous LBSNs [J]. IEEE Transactions on Affective Computing, 2022, 13(1): 272-284. |
3 | LIU Y, YIN M, ZHOU X. A collaborative filtering algorithm with intragroup divergence for POI group recommendation [J]. Applied Sciences, 2021, 11(12): No.5416. |
4 | ZHANG Y, YIN C, WU Q, et al. Location-aware deep collaborative filtering for service recommendation [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(6): 3796-3807. |
5 | WANG W, QUAN Z, ZHAO S, et al. User-context collaboration and tensor factorization for GNN-based social recommendation [J]. IEEE Transactions on Network Science and Engineering, 2023, 10(6): 3320-3330. |
6 | 刘欢,李晓戈,胡立坤,等.基于知识图谱驱动的图神经网络推荐模型[J].计算机应用, 2021, 41(7): 1865-1870. |
LIU H, LI X G, HU L K, et al. Knowledge graph driven recommendation model of graph neural network [J]. Journal of Computer Applications, 2021, 41(7): 1865-1870. | |
7 | FAN W, MA Y, LI Q, et al. Graph neural networks for social recommendation [C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 417-426. |
8 | ZHANG J, LIU X, ZHOU X, et al. Leveraging graph neural networks for Point-of-Interest recommendations [J]. Neurocomputing, 2021, 462: 1-13. |
9 | ALBRECHT J P. How the GDPR will change the world [J]. European Data Protection Law Review, 2016, 2(3): 287-289. |
10 | TRELEAVEN P, SMIETANKA M, PITHADIA H. Federated learning: the pioneering distributed machine learning and privacy-preserving data technology [J]. Computer, 2022, 55(4): 20-29. |
11 | LUO S, XIAO Y, SONG L. Personalized federated recommendation via joint representation learning, user clustering, and model adaptation [C]// Proceedings of the 31st ACM International Conference on Information and Knowledge Management. New York: ACM, 2022: 4289-4293. |
12 | ZION E BEN, LERNER B. Identifying and predicting social lifestyles in people’s trajectories by neural networks [J]. EPJ Data Science, 2018, 7: No.45. |
13 | LIU Y, WEI W, SUN A, et al. Exploiting geographical neighborhood characteristics for location recommendation [C]// Proceedings of the 23rd ACM International Conference on Information and Knowledge Management. New York: ACM, 2014: 739-748. |
14 | YIN M, LIU Y, ZHOU X, et al. A tensor decomposition based collaborative filtering algorithm for time-aware POI recommendation in LBSN [J]. Multimedia Tools and Applications, 2021, 80(30): 36215-36235. |
15 | CHEN M, LI W Z, QIAN L, et al. Next POI recommendation based on location interest mining with recurrent neural networks [J]. Journal of Computer Science and Technology, 2020, 35(3): 603-616. |
16 | HUANG L, MA Y, WANG S, et al. An attention-based spatiotemporal LSTM network for next POI recommendation [J]. IEEE Transactions on Services Computing, 2021, 14(6): 1585-1597. |
17 | WU S, ZHANG Y, GAO C, et al. GARG: anonymous recommendation of point-of-interest in mobile networks by graph convolution network [J]. Data Science and Engineering, 2020, 5(4): 433-447. |
18 | LIU J, CHEN Y, HUANG X, et al. GNN-based long and short term preference modeling for next-location prediction [J]. Information Sciences, 2023, 629: 1-14. |
19 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. [2023-01-12]. . |
20 | KUANG L, TU S, ZHANG Y, et al. Providing privacy preserving in next POI recommendation for mobile edge computing [J]. Journal of Cloud Computing, 2020, 9: No.10. |
21 | MENG S, QI L, LI Q, et al. Privacy-preserving and sparsity-aware location-based prediction method for collaborative recommender systems [J]. Future Generation Computer Systems, 2019, 96: 324-335. |
22 | McMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2017: 1273-1282. |
23 | WU C, WU F, LYU L, et al. A federated graph neural network framework for privacy-preserving personalization [J]. Nature Communications, 2022, 13: No.3091. |
24 | DONG Q, LIU B, ZHANG X, et al. Sequential POI recommend based on personalized federated learning [J]. Neural Processing Letters, 2023, 55: 7351-7368. |
25 | LI Z, BILAL M, XU X, et al. Federated learning-based cross-enterprise recommendation with graph neural networks [J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 673-682. |
26 | DING X, LI G, YUAN L, et al. Efficient federated item similarity model for privacy-preserving recommendation [J]. Information Processing and Management, 2023, 60(5): No.103470. |
27 | BRIGGS C, FAN Z, ANDRAS P. Federated learning with hierarchical clustering of local updates to improve training on non-IID data [C]// Proceedings of the 2020 IEEE International Joint Conference on Neural Networks. Piscataway: IEEE, 2020: 1-9. |
28 | 温菊屏,胡小生,林冬梅,等.基于参考节点嵌入的图可达性查询[J].计算机应用, 2016, 36(7): 1998-2005. |
WEN J P, HU X S, LIN D M, et al. Graph reachability query based on reference node embedding [J]. Journal of Computer Applications, 2016, 36(7): 1998-2005. | |
29 | 胡军,许正康,刘立,等.融合多粒度社区信息的网络嵌入方法[J].计算机应用, 2022, 42(3): 663-670. |
HU J, XU Z K, LIU L, et al. Network embedding method based on multi-granularity community information [J]. Journal of Computer Applications, 2022, 42(3): 663-670. | |
30 | 富坤,高金辉,赵晓梦,等.融合全局结构信息的拓扑优化图卷积网络[J].计算机应用, 2022, 42(2): 357-364. |
FU K, GAO J H, ZHAO X M, et al. Topology optimization based graph convolutional network combining with global structural information [J]. Journal of Computer Applications, 2022, 42(2): 357-364. | |
31 | LIU Z, YANG L, FAN Z, et al. Federated social recommendation with graph neural network [J]. ACM Transactions on Intelligent Systems and Technology, 2022, 13(4): No.55. |
32 | 张国鹏,陈学斌,王豪石,等.面向本地差分隐私的K-Prototypes聚类方法[J].计算机应用, 2022, 42(12): 3813-3821. |
ZHANG G P, CHEN X B, WANG H S, et al. K-Prototypes clustering method for local differential privacy [J]. Journal of Computer Applications, 2022, 42(12): 3813-3821. | |
33 | ZHENG Y, XIE X, MA W Y GeoLife : a collaborative social networking service among user, location and trajectory [J]. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 2010, 33(2): 32-39. |
34 | 中国POI数据[DB/OL]. [2023-10-22]. . |
China POI data [DB/OL]. [2023-10-22]. . | |
35 | HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering [C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 173-182. |
36 | CHAI D, WANG L, CHEN K, et al. Secure federated matrix factorization [J]. IEEE Intelligent Systems, 2021, 36(5): 11-20. |
[1] | 张淑芬, 张宏扬, 任志强, 陈学斌. 联邦学习的公平性综述[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 1-14. |
[2] | 胡健鹏, 张立臣. 面向多时间步风功率预测的深度时空网络模型[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 98-105. |
[3] | 晏燕, 钱星颖, 闫鹏斌, 杨杰. 位置大数据的联邦学习统计预测与差分隐私保护方法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 127-135. |
[4] | 陈廷伟, 张嘉诚, 王俊陆. 面向联邦学习的随机验证区块链构建[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2770-2776. |
[5] | 杨航, 李汪根, 张根生, 王志格, 开新. 基于图神经网络的多层信息交互融合算法用于会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2719-2725. |
[6] | 沈哲远, 杨珂珂, 李京. 基于双流神经网络的个性化联邦学习方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2319-2325. |
[7] | 陈学斌, 任志强, 张宏扬. 联邦学习中的安全威胁与防御措施综述[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1663-1672. |
[8] | 柯添赐, 刘建华, 孙水华, 郑智雄, 蔡子杰. 融合强关联依赖和简洁语法的方面级情感分析模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1786-1795. |
[9] | 罗玮, 刘金全, 张铮. 融合秘密分享技术的双重纵向联邦学习框架[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1872-1879. |
[10] | 姚迅, 秦忠正, 杨捷. 生成式标签对抗的文本分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1781-1785. |
[11] | 郭磊, 贾真, 李天瑞. 面向方面级情感分析的交互式关系图注意力网络[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 696-701. |
[12] | 徐大鹏, 侯新民. 基于网络结构设计的图神经网络特征选择方法[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 663-670. |
[13] | 余孙婕, 曾辉, 熊诗雨, 史红周. 基于生成式对抗网络的联邦学习激励机制[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 344-352. |
[14] | 张祖篡, 陈学斌, 高瑞, 邹元怀. 基于标签分类的联邦学习客户端选择方法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3759-3765. |
[15] | 王利琴, 张特, 许智宏, 董永峰, 杨国伟. 融合实体语义及结构信息的知识图谱推理[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3371-3378. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||