《计算机应用》唯一官方网站

• •    下一篇

基于证据深度学习的不确定性感知无监督医学图像配准模型

王一铭1,李世源1,廖南清2,陈庆锋1*   

  1. 1.广西大学 计算机与电子信息学院,南宁 530004;
    2. 广西大学 医学院,南宁 530004


  • 收稿日期:2024-10-11 修回日期:2024-12-30 接受日期:2024-12-31 发布日期:2025-01-06 出版日期:2025-01-06
  • 通讯作者: 陈庆锋
  • 基金资助:
    基于表征学习的多模态可信融合肿瘤诊疗研究;基于可信多模态融合的广西高发癌症诊疗模型研究

Uncertainty-aware unsupervised medical image registration model based on evidential deep learning

  • Received:2024-10-11 Revised:2024-12-30 Accepted:2024-12-31 Online:2025-01-06 Published:2025-01-06

摘要: 医学图像配准中的不确定性量化,对医师在实际临床应用中评估风险至关重要。目前,基于深度无监督学习的医学图像配准模型虽然已经具备不错的效果,但仍缺乏在配准时估计外观不确定性的方法,这将影响配准的精度和可信度。此外,在实时性应用场景中,医学图像配准模型不但需要具备较高的配准精度,还需要有较低的推理时耗。针对上述问题,提出EvidentialMorph模型,将证据深度学习(EDL)应用于无监督医学图像配准。证据深度学习是一种新兴的不确定性量化方法,无需额外的计算开销。EvidentialMorph首先通过U-Net架构的配准主干网络模块学习得到形变向量场(DVF),再通过一种改进的空间变换网络模块(STN)——证据STN模块学习配准图像的正态逆伽马分布,从而能够直接计算出配准图像及其外观不确定性。在多个核磁共振成像(MRI)医学图像数据集上进行了实验,与CLMorph模型相比,在配准精度上,EvidentialMorph在Dice相似性系数(DSC)提升了20个百分点,在NCC归一化交叉系数(NCC)提升了25个百分点;在推理时耗上,EvidentialMorph降低了85毫秒。实验结果表明,与基准模型CLMorph相比,EvidentialMorph能够快速地得到有效的不确定性量化结果,并提升配准精度,这将为实时性医学图像配准场景提供不确定性量化的可能,改善配准效果。

关键词: 医学图像配准, 无监督学习, 不确定性估计, 证据深度学习, 可信机器学习

Abstract: Uncertainty quantification in medical image registration is crucial for surgeons to evaluate surgical risk based on the trustworthiness of registered image data in real-world clinical trials. While deep unsupervised learning-based registration models have shown promise, there is a lack of methods to estimate appearance uncertainty, which directly affects registration accuracy and trustworthiness. Further, real-time applications necessitate registration models that are both highly accurate and fast in inference. To address these issues, the EvidentialMorph model was proposed, which applies EDL (Evidential Deep Learning), a promising approach for uncertainty quantification without additional computational cost, to unsupervised deformable medical image registration. The EvidentialMorph model was designed to first learn the DVF (Deformation Vector Field) through a registration backbone network module with a U-Net architecture, and then to learn the NIG (Normal Inverse Gamma) distribution of the registered image through an evidential STN (Spatial Transformer Network) module, providing parameters that directly indicate the registered image and its appearance uncertainty. Applied to several MRI (Magnetic Resonance Imaging) datasets, results show that EvidentialMorph improves DSC (Dice Similarity Coefficient) and NCC (Normalized Cross-Correlation) scores by 20 percentage points and 25 percentage points, respectively, over the CLMorph model and reduces inference time by 85 ms. EvidentialMorph outperformed baseline models, demonstrating effective uncertainty quantification and improved registration accuracy, offering potential for real-time applications and improved registration outcomes.

Key words: medical image registration, unsupervised learning, uncertainty estimation, evidential deep learning, trustworthy machine learning