《计算机应用》唯一官方网站 ›› 2021, Vol. 41 ›› Issue (8): 2273-2287.DOI: 10.11772/j.issn.1001-9081.2020101638
所属专题: 综述; 多媒体计算与计算机仿真
收稿日期:
2020-10-21
修回日期:
2021-01-13
发布日期:
2021-01-27
出版日期:
2021-08-10
通讯作者:
李宏亮
作者简介:
曹玉红(1968-),女,河北平山人,高级工程师,博士,主要研究方向:计算机视觉、人工智能;徐海(1993-),男,江西乐平人,博士研究生,主要研究方向:计算机视觉、人工智能、语义分割;刘荪傲(1997-),男,山东青岛人,硕士研究生,主要研究方向:计算机视觉、人工智能、语义分割;王紫霄(1999-),男,河北石家庄人,硕士研究生,主要研究方向:计算机视觉、人工智能、半监督学习;李宏亮(1987-),男,河南安阳人,工程师,博士,主要研究方向:计算机视觉、计算成像。
基金资助:
CAO Yuhong1, XU Hai2, LIU Sun'ao2, WANG Zixiao2, LI Hongliang3
Received:
2020-10-21
Revised:
2021-01-13
Online:
2021-01-27
Published:
2021-08-10
Supported by:
摘要: 医学影像分割是计算机辅助诊断中的一项基础且关键的任务,目的在于从像素级别准确识别出目标器官、组织或病变区域。不同于自然场景下的图像,医学影像往往纹理复杂,同时受限于成像技术和成像设备,医学影像噪声大,边界模糊而不易判断。除此之外,对医学影像进行标注极大依赖于医疗专家的认知和经验,因此可用于训练中的标注数据少且存在标注误差。由于上述的医学影像边缘模糊不清、训练数据较少和标注误差较大等特点,基于传统图像分割算法搭建的辅助诊断系统难以满足临床应用的要求。近年来随着卷积神经网络(CNN)在计算机视觉和自然语言处理领域的广泛应用,基于深度学习的医学影像分割算法取得了极大的成功。首先概述了近几年基于深度学习的医学影像分割的研究进展,包括这些医学影像分割算法的基本结构、目标函数和优化方法。随后针对医学影像标注数据有限的问题,对目前半监督条件下医学影像分割的主流工作进行了整理归纳和分析。此外,还介绍了针对标注误差进行不确定度分析的相关工作。最后,总结分析了深度学习医学影像分割的特点并展望了未来的研究趋势。
中图分类号:
曹玉红, 徐海, 刘荪傲, 王紫霄, 李宏亮. 基于深度学习的医学影像分割研究综述[J]. 计算机应用, 2021, 41(8): 2273-2287.
CAO Yuhong, XU Hai, LIU Sun'ao, WANG Zixiao, LI Hongliang. Review of deep learning-based medical image segmentation[J]. Journal of Computer Applications, 2021, 41(8): 2273-2287.
[1] DOI K. Computer-aided diagnosis in medical imaging:historical review, current status and future potential[J]. Computerized Medical Imaging and Graphics,2007,31(4/5):198-211. [2] PHAM D L,XU C Y,PRINCE J L. Current methods in medical image segmentation[J]. Annual Review of Biomedical Engineering,2000,2:315-337. [3] MUTHUKRISHNAN R,RADHA M. Edge detection techniques for image segmentation[J]. International Journal of Computer Science and Information Technology,2011,3(6):259-267. [4] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man,and Cybernetics,1979, 9(1):62-66. [5] KAGANAMI H G,ZOU B J. Region-based segmentation versus edge detection[C]//Proceedings of the 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Piscataway:IEEE,2009:1217-1221. [6] PATIL D D,DEORE S G. Medical image segmentation:a review[J]. International Journal of Computer Science and Mobile Computing,2013,2(1):22-27. [7] HE K M,ZHANG X Y,REN S Q,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [8] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2020-10-10]. https://arxiv.org/pdf/1409.1556.pdf. [9] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:1-9. [10] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2012:1097-1105. [11] LONG J,SHELHAMER E,DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:3431-3440. [12] MA Y H,HAO H Y,XIE J Y,et al. ROSE:a retinal OCTangiography vessel segmentation dataset and new model[J]. IEEE Transactions on Medical Imaging,2021,40(3):928-939. [13] MILLETARI F, NAVAB N, AHMADI S A. V-Net:fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 4th International Conference on 3D Vision. Piscataway:IEEE,2016:565-571. [14] RONNEBERGER O, FISCHER P, BROX T. U-net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer,2015:234-241. [15] XU H,XIE H T,LIU Y Z,et al. Deep cascaded attention network for multi-task brain tumor segmentation[C]//Proceedings of the 2019 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 11766. Cham:Springer,2019:420-428. [16] CHEN L C,PAPANDREOU G,SCHROFF F,et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-12-05)[2020-10-10]. https://arxiv.org/pdf/1706.05587.pdf. [17] CHEN L C,ZHU Y K,PAPANDREOU G,et al. Encoderdecoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham:Springer, 2018:833-851. [18] ÇIÇEK Ö,ABDULKADIR A,LIENKAMP S S,et al. 3D u-net:learning dense volumetric segmentation from sparse annotation[C]//Proceedings of the 2016 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9901. Cham:Springer,2016:424-432. [19] PERONE C S, COHEN-ADAD J. Deep semi-supervised segmentation with weight-averaged consistency targets[C]//Proceedings of the 2018 International Workshop on Deep Learning in Medical Image Analysis/2018 International Workshop on Multimodal Learning for Clinical Decision Support,LNCS 11045. Cham:Springer,2018:12-19. [20] YU L Q,WANG S J,LI X M,et al. Uncertainty-aware selfensembling model for semi-supervised 3D left atrium segmentation[C]//Proceedings of the 2019 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 11765. Cham:Springer,2019:605-613. [21] LI X M,YU L Q,CHEN H,et al. Semi-supervised skin lesion segmentation via transformation consistent self-ensembling model[C]//Proceedings of the 2018 British Machine Vision Conference. Durham:BMVA Press,2018:No. 0162. [22] SONG Y Q,ZHANG C S,LEE J G,et al. Semi-supervised discriminative classification with application to tumorous tissues segmentation of MR brain images[J]. Pattern Analysis and Applications,2009,12(2):99-115. [23] XU K,SU H,ZHU J,et al. Neuron segmentation based on CNN with semi-supervised regularization[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE,2016:1324-1332. [24] YI X,WALIA E,BABYN P. Generative adversarial network in medical imaging:a review[J]. Medical Image Analysis,2019, 58:No. 101552. [25] SWILER L P,GIUNTA A A. Aleatory and epistemic uncertainty quantification for engineering applications:SAND2007-2670C[R]. Albuquerque,NM:Sandia National Laboratories,2007. [26] LAKSHMINARAYANAN B,PRITZEL A,BLUNDELL C. Simple and scalable predictive uncertainty estimation using deep ensembles[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2017:6405-6416. [27] GAL Y, GHAHRAMANI Z. Dropout as a Bayesian approximation:Representing model uncertainty in deep learning[C]//Proceedings of the 33rd International Conference on Machine Learning. New York:JMLR. org,2016:1050-1059. [28] ZHOU Z,RAHMAN SIDDIQUEE M M,TAJBAKHSH N,et al. UNet++:a nested U-Net architecture for medical image segmentation[C]//Proceedings of the 2018 International Workshop on Deep Learning in Medical Image Analysis/2018 International Workshop on Multimodal Learning for Clinical Decision Support,LNCS 11045. Cham:Springer,2018:3-11. [29] HU J,SHEN L,SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:7132-7141. [30] ZHOU C H,CHEN S C,DING C X,et al. Learning contextual and attentive information for brain tumor segmentation[C]//Proceedings of the 2018 International MICCAI Brainlesion Workshop,LNCS 11384. Cham:Springer,2018:497-507. [31] WANG X L,GIRSHICK R,GUPTA A,et al. Non-local neural networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7794-7803. [32] HE X,YANG S B,LI G B,et al. Non-local context encoder:robust biomedical image segmentation against adversarial attacks[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:8417-8424. [33] MENZE B H,JAKAB A,BAUER S,et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)[J]. IEEE Transactions on Medical Imaging,2014,34(10):1993-2024. [34] ZHOU C H,DING C X,WANG X C,et al. One-pass multi-task networks with cross-task guided attention for brain tumor segmentation[J]. IEEE Transactions on Image Processing,2020, 29:4516-4529. [35] CHEN L C,PAPANDREOU G,KOKKINOS I,et al. DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [36] DAI J F,QI H Z,XIONG Y W,et al. Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:764-773. [37] WANG G T,LI W Q,OURSELIN S,et al. Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks[C]//Proceedings of the 2017 International MICCAI Brainlesion Workshop,LNCS 10670. Cham:Springer,2017:178-190. [38] LIU S A, XU H, LIU Y Z, et al. Improving brain tumor segmentation with dilated pseudo-3D convolution and multidirection fusion[C]//Proceedings of the 2020 International Conference on Multimedia Modeling, LNCS 11961. Cham:Springer,2020:727-738. [39] GUO X N,XIE H T,XU H,et al. Global context and boundary structure-guided network for cross-modal organ segmentation[J]. Information Processing and Management, 2020, 57(4):No. 102252. [40] QIU Z F,YAO T,MEI T. Learning spatio-temporal representation with pseudo-3D residual networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:5534-5542. [41] JIANG Z Y,DING C X,LIU M F,et al. Two-stage cascaded UNet:1st place solution to BraTS challenge 2019 segmentation task[C]//Proceedings of the 2019 International MICCAI Brainlesion Workshop,LNCS 11992. Cham:Springer,2019:231-241. [42] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2999-3007. [43] SUDRE C H,LI W Q,VERCAUTEREN T,et al. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations[C]//Proceedings of the 2017 International Workshop on Deep Learning in Medical Image Analysis/2017 International Workshop on Multimodal Learning for Clinical Decision Support, LNCS 10553. Cham:Springer, 2017:240-248. [44] REN X H,AHMAD S,ZHANG L C,et al. Task decomposition and synchronization for semantic biomedical image segmentation[J]. IEEE Transactions on Image Processing,2020,29:7497-7510. [45] LIU S A,GUO X N. Improving brain tumor segmentation with multi-direction fusion and fine class prediction[C]//Proceedings of the 2019 International MICCAI Brainlesion Workshop, LNCS 11992. Cham:Springer,2019:349-358. [46] ISENSEE F,PETERSEN J,KLEIN A,et al. nnU-Net:selfadapting framework for U-Net-based medical image segmentation[EB/OL]. (2018-09-27)[2020-10-10]. https://arxiv.org/pdf/1809.10486.pdf. [47] IOFFE S,SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. New York:JMLR. org,2015:448-456. [48] WU Y X,HE K M. Group normalization[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11217. Cham:Springer,2018:3-19. [49] ULYANOV D, VEDALDI A, LEMPITSKY V. Instance normalization:the missing ingredient for fast stylization[EB/OL]. (2017-11-06)[2020-10-10]. https://arxiv.org/pdf/1607.08022.pdf. [50] BA J L,KIROS J R,HINTON G E. Layer normalization[EB/OL]. (2016-07-21)[2020-10-10]. https://arxiv.org/pdf/1607.06450.pdf. [51] MAAS A L,HANNUN A Y,NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of the 30th International Conference on Machine Learning. New York:JMLR. org,2013:3. [52] HE K M,ZHANG X Y,REN S Q,et al. Delving deep into rectifiers:Surpassing human-level performance on ImageNet classification[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:1026-1034. [53] MYRONENKO A. 3D MRI brain tumor segmentation using autoencoder regularization[C]//Proceedings of the 2018 International MICCAI Brainlesion Workshop, LNCS 11384. Cham:Springer,2018:311-320. [54] RAJCHL M,LEE M C H,OKTAY O,et al. DeepCut:object segmentation from bounding box annotations using convolutional neural networks[J]. IEEE Transactions on Medical Imaging, 2017,36(2):674-683. [55] KAMNITSAS K,BAI W J,FERRANTE E,et al. Ensembles of multiple models and architectures for robust brain tumour segmentation[C]//Proceedings of the 2017 International MICCAI Brainlesion Workshop,LNCS 10670. Cham:Springer,2017:450-462. [56] BAI W J,OKTAY O,SINCLAIR M,et al. Semi-supervised learning for network-based cardiac MR image segmentation[C]//Proceedings of the 2017 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 10434. Cham:Springer,2017:253-260. [57] TANG M,VALIPOUR S,ZHANG Z C,et al. A deep level set method for image segmentation[C]//Proceedings of the 2017 International Workshop on Deep Learning in Medical Image Analysis/2017 International Workshop on Multimodal Learning for Clinical Decision Support,LNCS 10553. Cham:Springer,2017:126-134. [58] PENG J Z,ESTRADA G,PEDERSOLI M,et al. Deep cotraining for semi-supervised image segmentation[J]. Pattern Recognition,2020,107:No. 107269. [59] XIA Y D,YANG D,YU Z D,et al. Uncertainty-aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation[J]. Medical Image Analysis, 2020, 65:No. 101766. [60] ZHOU Y Y,WANG Y,TANG P,et al. Semi-supervised 3D abdominal multi-organ segmentation via multi-planar co-training[C]//Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE, 2019:121-140. [61] KERVADEC H,DOLZ J,GRANGER É,et al. Curriculum semisupervised segmentation[C]//Proceedings of the 2019 International Conference on Medical Image Computing and Computer-Assisted Intervention,LNCS 11765. Cham:Springer, 2019:568-576. [62] MIN S B,CHEN X J. A robust deep attention network to noisy labels in semi-supervised biomedical segmentation[EB/OL]. (2018-07-31)[2020-10-10]. https://arxiv.org/pdf/1807.11719v1.pdf. [63] BORTSOVA G, DUBOST F, HOGEWEG L, et al. Semisupervised medical image segmentation via learning consistency under transformations[C]//Proceedings of the 2019 International Conference on Medical Image Computing and Computer-Assisted Intervention,LNCS 11769. Cham:Springer,2019:810-818. [64] LI X M,YU L Q,CHEN H,et al. Transformation-consistent selfensembling model for semisupervised medical image segmentation[J]. IEEE Transactions on Neural Networks and Learning Systems,2021,32(2):523-534. [65] LAINE S,AILA T. Temporal ensembling for semi-supervised learning[EB/OL]. (2017-03-15)[2020-10-10]. https://arxiv.org/pdf/1610.02242.pdf. [66] TARVAINEN A,VALPOLA H. Mean teachers are better role models:weight-averaged consistency targets improve semisupervised deep learning results[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:1195-1204. [67] CHEN S,BORTSOVA G,GARCÍA-UCEDA JUÁREZ A,et al. Multi-task attention-based semi-supervised learning for medical image segmentation[C]//Proceedings of the 2019 International Conference on Medical Image Computing and Computer-Assisted Intervention,LNCS 11766. Cham:Springer,2019:457-465. [68] BAUR C,ALBARQOUNI S,NAVAB N. Semi-supervised deep learning for fully convolutional networks[C]//Proceedings of the 2017 International Conference on Medical Image Computing and Computer-Assisted Intervention,LNCS 10435. Cham:Springer, 2017:311-319. [69] WESTON J,RATLE F,MOBAHI H,et al. Deep learning via semi-supervised embedding[M]//MONTAVON G,ORR G B, MÜLLER K R. Neural Networks:Tricks of the Trade,LNCS 7700.2nd ed. Berlin:Springer,2012:639-655. [70] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:2672-2680. [71] CHAITANYA K,KARANI N,BAUMGARTNER C F,et al. Semi-supervised and task-driven data augmentation[C]//Proceedings of the 2019 International Conference on Information Processing in Medical Imaging,LNCS 11492. Cham:Springer, 2019:29-41. [72] MONDAL A K,DOLZ J,DESROSIERS C. Few-shot 3D multimodal medical image segmentation using generative adversarial learning[EB/OL]. (2018-10-29)[2020-10-10]. https://arxiv.org/pdf/1810.12241.pdf. [73] ZHANG Y Z,YANG L,CHEN J X,et al. Deep adversarial networks for biomedical image segmentation utilizing unannotated images[C]//Proceedings of the 2017 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 10435. Cham:Springer,2017:408-416. [74] NIE D,GAO Y Z,WANG L,et al. ASDNet:attention based semi-supervised deep networks for medical image segmentation[C]//Proceedings of the 2018 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 11073. Cham:Springer,2018:370-378. [75] ZHOU Y,HE X D,HUANG L,et al. Collaborative learning of semi-supervised segmentation and classification for medical images[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:2074-2083. [76] ROSS T,ZIMMERER D,VEMURI A,et al. Exploiting the potential of unlabeled endoscopic video data with self-supervised learning[J]. International Journal of Computer Assisted Radiology and Surgery,2018,13(6):925-933. [77] MERTIKOPOULOS P, MOUSTAKAS A L. Learning in an uncertain world:MIMO covariance matrix optimization with imperfect feedback[J]. IEEE Transactions on Signal Processing, 2016,64(1):5-18. [78] KENDALL A,GAL Y. What uncertainties do we need in bayesian deep learning for computer vision?[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:5580-5590. [79] GAL Y,ISLAM R,GHAHRAMANI Z. Deep Bayesian active learning with image data[C]//Proceedings of the 34th International Conference on Machine Learning. New York:JMLR. org,2017:1183-1192. [80] RUPPRECHT C,LAINA I,DIPIETRO R,et al. Learning in an uncertain world:representing ambiguity through multiple hypotheses[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:3591-3600. [81] KOHL S, ROMERA-PAREDES B, MEYER C, et al. A probabilistic U-Net for segmentation of ambiguous images[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2018:6965-6975. [82] BAUMGARTNER C F,TEZCAN K C,CHAITANYA K,et al. PHiSeg:capturing uncertainty in medical image segmentation[C]//Proceedings of the 2019 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 11765. Cham:Springer,2019:119-127. [83] LOPEZ R, REGIER J, JORDAN M I, et al. Information constraints on auto-encoding variational Bayes[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc., 2018:6117-6128. [84] BLUNDELL C, CORNEBISE J, KAVUKCUOGLU K, et al. Weight uncertainty in neural networks[C]//Proceedings of the 32nd International Conference on Machine Learning. New York:JMLR. org,2015:1613-1622. [85] KINGMA D P,SALIMANS T,WELLING M. Variational dropout and the local reparameterization trick[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2015:2575-2583. [86] JOSKOWICZ L, COHEN D, CAPLAN N, et al. Automatic segmentation variability estimation with segmentation priors[J]. Medical Image Analysis,2018,50:54-64. [87] WANG G T,LI W Q,AERTSEN M,et al. Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks[J]. Neurocomputing,2019,338:34-45. [88] SINGH A,NOWAK R D,ZHU X J. Unlabeled data:now it helps,now it doesn' t[C]//Proceedings of the 21st International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2009:1513-1520. |
[1] | 谢德峰, 吉建民. 融入句法感知表示进行句法增强的语义解析[J]. 计算机应用, 2021, 41(9): 2489-2495. |
[2] | 代雨柔, 杨庆, 张凤荔, 周帆. 基于自监督学习的社交网络用户轨迹预测模型[J]. 计算机应用, 2021, 41(9): 2545-2551. |
[3] | 张师鹏, 李永忠, 杜祥通. 基于半监督学习和三支决策的入侵检测模型[J]. 计算机应用, 2021, 41(9): 2602-2608. |
[4] | 毛铭泽, 曹芮浩, 闫春钢. 基于权值多样性的半监督分类算法[J]. 计算机应用, 2021, 41(9): 2473-2480. |
[5] | 王贺兵, 张春梅. 基于非对称卷积-压缩激发-次代残差网络的人脸关键点检测[J]. 计算机应用, 2021, 41(9): 2741-2747. |
[6] | 郑志强, 胡鑫, 翁智, 王雨禾, 程曦. 基于改进DenseNet的牛眼图像特征提取方法[J]. 计算机应用, 2021, 41(9): 2780-2784. |
[7] | 陈成瑞, 孙宁, 何世彪, 廖勇. 面向C-V2X通信的基于深度学习的联合信道估计与均衡算法[J]. 计算机应用, 2021, 41(9): 2687-2693. |
[8] | 宋中山, 梁家锐, 郑禄, 刘振宇, 帖军. 基于双向门控尺度特征融合的遥感场景分类[J]. 计算机应用, 2021, 41(9): 2726-2735. |
[9] | 李康康, 张静. 基于注意力机制的多层次编码和解码的图像描述模型[J]. 计算机应用, 2021, 41(9): 2504-2509. |
[10] | 张永斌, 常文欣, 孙连山, 张航. 基于字典的域名生成算法生成域名的检测方法[J]. 计算机应用, 2021, 41(9): 2609-2614. |
[11] | 赵宏, 孔东一. 图像特征注意力与自适应注意力融合的图像内容中文描述[J]. 计算机应用, 2021, 41(9): 2496-2503. |
[12] | 徐江浪, 李林燕, 万新军, 胡伏原. 结合目标检测的室内场景识别方法[J]. 计算机应用, 2021, 41(9): 2720-2725. |
[13] | 牟长宁, 王海鹏, 周丕宇, 侯鑫行. 基于图卷积神经网络的串联质谱从头测序[J]. 计算机应用, 2021, 41(9): 2773-2779. |
[14] | 何正海, 线岩团, 王蒙, 余正涛. 融合句法指导与字符注意力机制的案情阅读理解方法[J]. 计算机应用, 2021, 41(8): 2427-2431. |
[15] | 秦斌斌, 彭良康, 卢向明, 钱江波. 司机分心驾驶检测研究进展[J]. 计算机应用, 2021, 41(8): 2330-2337. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||