《计算机应用》唯一官方网站

• •    下一篇

基于双路径注意力机制和多尺度信息融合的皮肤病变图像分割

王斯豪,张笃振,杨昌昌   

  1. 江苏师范大学
  • 收稿日期:2024-11-26 修回日期:2025-02-15 接受日期:2025-02-21 发布日期:2025-03-04 出版日期:2025-03-04
  • 通讯作者: 张笃振
  • 基金资助:
    江苏省高等学校自然科学研究面上项目

Skin Lesion Image Segmentation Based on Dual-Path Attention Mechanism and Multi-Scale Information Fusion

  • Received:2024-11-26 Revised:2025-02-15 Accepted:2025-02-21 Online:2025-03-04 Published:2025-03-04
  • Supported by:
    Natural Science Research General Program of Jiangsu Higher Education Institutions

摘要: 针对皮肤病灶边界模糊、存在毛发干扰、病灶大小不一等问题,提出一种基于双路径注意力机制和多尺度信息融合的皮肤病变分割网络。首先,在网络编码器部分设计基于深度可分离卷积的残差门控注意力模块(DGConv),用于捕捉病变区域的局部信息;其次,在网络瓶颈处设计多尺度上下文关系提取模块(MCEM),采用水平平均池化及垂直平均池化建模上下文信息,并融合残差空洞卷积金字塔模块捕获的多尺度特征进一步增强对病灶全局信息的理解;接着在跳跃连接处设计双路径注意力模块用于细化病灶信息,然后通过多尺度特征融合增强(MSFE)模块实现多阶段信息的交融并丰富当前阶段传输的细节特征信息;最后,在解码器部分设计特征融合模块(FM),能应对同阶段接受野失配的问题,逐步融合编码器输出和跳跃连接传递的特征信息得到最终的分割结果。该模型在ISIC2017和ISIC2018数据集上的实验结果表明,相较于皮肤病灶分割方面表现次优的算法,Dice指标分别提高0.09和1.09个百分点,IoU指标分别提高0.14和1.76个百分点。与经典U-Net网络相比,Dice指标分别提高5.13和3.85个百分点,IoU指标分别提高7.74和6.03个百分点,充分说明该网络的先进性与有效性。

关键词: 皮肤病灶分割, 注意力机制, 空洞卷积, 多尺度信息, 特征融合

Abstract: Abstract: Aiming to address issues such as blurred skin lesion boundaries, hair interference, and varying lesion sizes, a skin lesion segmentation network based on a dual-path attention mechanism and multi-scale information fusion was proposed. First, a residual gated attention module (DGConv) utilizing depthwise separable convolution was designed in the encoder to capture local lesion information. Second, a multi-scale context extraction module (MCEM) was introduced at the bottleneck, employing horizontal and vertical average pooling to model context and integrating multi-scale features from a residual atrous convolution pyramid to enhance global lesion understanding. A dual-path attention module was applied at skip connections to refine lesion details, while a multi-scale feature enhancement (MSFE) module was utilized to enrich feature details by fusing multi-stage information. Finally, a feature fusion module (FM) was designed in the decoder to address receptive field mismatches, progressively combining encoder outputs and skip connection features to achieve the final segmentation. Experiments on the ISIC2017 and ISIC2018 datasets demonstrated that the proposed model outperformed suboptimal methods, with Dice improvements of 0.09 and 1.09 percentage points, and IoU improvements of 0.14 and 1.76 percentage points, respectively. Compared to U-Net, Dice was improved by 5.13 and 3.85 percentage points, and IoU by 7.74 and 6.03 percentage points, confirming the effectiveness of the proposed network.

Key words: skin lesion segmentation, attention mechanism, dilated convolution, multi-scale information, feature fusion

中图分类号: