《计算机应用》唯一官方网站

• •    下一篇

基于多图神经网络和图对比学习的科学文献摘要模型

赵红燕1,郭力华2,刘春霞3,王日云4   

  1. 1. 太原科技大学计算机科学与技术学院
    2. 太原科技大学 计算机科学与技术学院
    3. 太原科技大学 计算机科学与技术学院,太原 030024
    4. 太原科技大学
  • 收稿日期:2024-12-12 修回日期:2025-03-02 发布日期:2025-03-13 出版日期:2025-03-13
  • 通讯作者: 刘春霞
  • 基金资助:
    山西省自然科学面上基金项目;山西省重点实验室开放基金项目;太原科技大学博士科研启动基金项目

Scientific document summarization model based on multi-graph neural network and graph contrastive learning

  • Received:2024-12-12 Revised:2025-03-02 Online:2025-03-13 Published:2025-03-13
  • Contact: LIU chunChun-xia
  • Supported by:
    the Natural Science Foundation of Shanxi Province;the Open Foundation of Key Laboratory of Shanxi Province;the Ph.D. Research Startup Foundation of Taiyuan University of Science and Technology

摘要: 长文档摘要生成面临跨句关系的捕捉、长距离依赖及文档信息的高效编码与提取等难题,一直是自然语言处理领域的一个难点任务。然而,科学文献通常包含多个章节和段落,具有更加复杂的层次结构,使得科学文献摘要生成任务更具挑战性。针对以上问题,提出了一种基于多图神经网络和图对比学习的科学文献摘要模型(MGCSum)。对于输入的文档,该模型首先通过同构图和异构图神经网络分别建模句内与句间关系,生成初始句子表示;然后,将这些句子表示馈送到一个多头超图注意网络,利用自注意机制充分捕捉节点和边之间的关系,进一步更新和学习跨句子的表示;接着,引入图对比学习模块,增强全局主题感知,提升句子表示的语义一致性和区分度;最后,采用多层感知器和归一化层计算一个得分,用于判断句子是否应被选为摘要。在PubMed和ArXiv数据集上的实验结果表明,MGCSum模型的表现优于多数对比模型。在PubMed数据集上,MGCSum的ROUGE-1、ROUGE-2和ROUGE-L分别达到了48.97%、23.15%和44.09%,相比现有的先进模型HAESum,分别提高了0.2、0.71和0.26个百分点。MGCSum通过结合多图神经网络和图对比学习,能够更有效地捕捉文献的层次结构信息和跨句关系,提升摘要生成的准确性和语义一致性,展现了其在科学文献摘要生成任务中的优势。

关键词: 科学文献摘要, 抽取式摘要, 图神经网络, 超图注意网络, 图对比学习

Abstract: Summarizing long documents has been identified as a challenging task in natural language processing due to difficulties in capturing inter-sentence relationships, handling long-range dependencies, and efficiently encoding and extracting document information. Scientific documents, characterized by multiple chapters and paragraphs with complex hierarchical structures, further increased the difficulty of the summarization task. To address these challenges, a scientific document summarization model based on multi-graph neural networks and graph contrastive learning, named MGCSum, was proposed. First, for a given input document, intra-sentence and inter-sentence relationships were modeled using homogeneous and heterogeneous graph neural networks, respectively, to generate initial sentence representations. These representations were subsequently fed into a multi-head hypergraph attention network, where self-attention mechanisms were leveraged to capture relationships between nodes and edges, enabling the updating and learning of cross-sentence representations. Then, a graph contrastive learning module was introduced to enhance global topic awareness, improving the semantic consistency and discriminability of sentence representations. Finally, a multi-layer perceptron and a normalization layer were applied to calculate scores for determining whether sentences should be selected for summarization. The experimental results on the PubMed and ArXiv datasets indicate that the MGCSum model outperformed most baseline models. On the PubMed dataset, MGCSum achieved ROUGE-1, ROUGE-2, and ROUGE-L scores of 48.97%, 23.15%, and 44.09%, respectively, with improvements of 0.2, 0.71, and 0.26 percentage points over the state-of-the-art model HAESum. By integrating multi-graph neural networks and graph contrastive learning, MGCSum effectively captures hierarchical structural information and inter-sentence relationships, enhancing the accuracy and semantic consistency of summarization, and demonstrating its advantages in scientific document summarization tasks.

Key words: scientific document summarization, extractive summarization, Graph Neural Network (GNN), HyperGraph ATtention network (HGAT), Graph Contrastive Learning (GCL)

中图分类号: