《计算机应用》唯一官方网站

• •    下一篇

基于深度学习的电网企业专利价值评估

盛兴1,翁孙贤2,陈扩松2,王忠平2,任芮锋3,刘勇4   

  1. 1. 国家电网有限公司
    2. 国网福建省电力有限公司电力科学研究院
    3. 中国人民大学
    4. 中国人民大学 高瓴人工智能学院
  • 收稿日期:2025-07-29 修回日期:2025-09-03 发布日期:2025-09-25 出版日期:2025-09-25
  • 通讯作者: 刘勇
  • 基金资助:
    电网企业专利价值量化评估关键技术研究

Deep Learning-Based Patent Value Evaluation for Power Grid Enterprises

  • Received:2025-07-29 Revised:2025-09-03 Online:2025-09-25 Published:2025-09-25

摘要: 专利价值评估是优化资源配置、指导知识产权战略决策的重要手段。传统人工评估方法受限于专家主观经验、评估效率低下等问题,难以适应数字经济时代企业对于专利价值评估的规模化需求。近年来,机器学习技术凭借其强大的高维特征提取优势,为专利价值评估范式的革新提供了技术可行性。然而,现有研究多聚焦于单一技术维度的小规模模型,尚未充分探索大语言模型在价值指标量化中的潜力,且现有方法难以适用于专利数据部分指标缺失的场景。针对电网企业专利数据库中的非结构化文本数据较难处理、部分专利价值指标不完整等问题,提出基于深度学习的电网企业专利价值评估方法,主要包括:采用大语言模型(LLM)技术对电网企业专利的非结构化文本信息进行处理;采取半监督学习范式完成用于训练的已标注专利数据库的扩充;通过集成学习方式在电网企业专利数据库上完成模型训练并进行专利价值评估。实证结果表明,本文方法能够对电网企业专利价值进行高效评估,且评估误差较小。本研究为智能专利分析提供了新的方法论框架,对辅助知识产权战略决策具有实用意义。

关键词: 深度学习, 专利价值评估, 半监督学习, 大语言模型, 集成学习

Abstract: Patent value evaluation is a crucial tool for optimizing resource allocation and guiding intellectual property strategy decisions. Traditional manual evaluation methods are limited by subjective expert experience and low evaluation efficiency, making it difficult to meet the large-scale demands of enterprises in the digital economy era. In recent years, machine learning technologies, with their powerful high-dimensional feature extraction capabilities, have provided a feasible technological pathway for innovating patent value evaluation paradigms. However, existing studies mainly focus on small-scale models within a single technical dimension and have yet to fully explore the potential of Large Language Models (LLMs) in quantifying value indicators. Moreover, current methods struggle to handle cases where some patent data indicators are missing. To addresses the challenges of processing unstructured textual data and incomplete patent value indicators in the patent database of power grid enterprises, this paper proposed a deep learning-based patent value evaluation method for power grid enterprises. The approach primarily involved: utilizing Large Language Model (LLM) technology to process unstructured textual information in power grid enterprise patents; adopting a semi-supervised learning paradigm to expand the labeled patent database used for training; and employing ensemble learning techniques to train the model on the power grid enterprise patent database and conduct patent value evaluation. Empirical results demonstrate that the proposed method can efficiently evaluate patent value with minimal evaluation error. This research provides a new methodological framework for intelligent patent analysis and has practical significance in supporting intellectual property strategy decisions.

Key words: Deep Learning, Patent Value Evaluation, Semi-Supervised Learning, Large Language Models, Ensemble Learning

中图分类号: