《计算机应用》唯一官方网站

• •    下一篇

基于介尺度建模的动态交通多智能体仿真方法

张睿1,郑至诚1,潘理虎1,郭桓渊1,张林梁2,闫慧敏3   

  1. 1.太原科技大学 计算机科学与技术学院 2.山西省智慧交通研究院有限公司 3.中国科学院地理科学与资源研究所
  • 收稿日期:2025-09-24 修回日期:2025-12-09 发布日期:2025-12-22 出版日期:2025-12-22
  • 通讯作者: 张睿
  • 作者简介:张睿(1987—),男,山西太原人,教授,博士,CCF高级会员,主要研究方向:智能信息处理、自动机器学习;郑至诚(2002—),男,安徽阜阳人,硕士研究生,主要研究方向:多智能体仿真;潘理虎(1974—),男,河南上蔡人,教授,博士,主要研究方向:多智能体仿真、图像处理;郭桓渊(2001—),男,山西长治人,硕士研究生,主要研究方向:多智能体仿真;张林梁(1984—),男,山东潍坊人,高级工程师,博士,主要研究方向:深度学习、机器学习、计算机视觉、大数据挖掘;闫慧敏(1974—),女,内蒙古锡林郭勒盟人,副研究员,博士,主要研究方向:生态系统过程模拟。
  • 基金资助:
    山西省基础研究项目(202203021221145);山西省研究生联合培养示范基地项目(2022JD11)

Mesoscopic modeling-based multi-agent simulation method for dynamic traffic

ZHANG Rui1, ZHENG Zhicheng1, PAN Lihu1, GUO Huanyuan1, ZHANG Linliang2, YAN Huimin3   

  1. 1. College of Computer Science and Technology, Taiyuan University of Science and Technology 2. Shanxi Province Intelligent Transportation Research Institute Company Limited 3.Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
  • Received:2025-09-24 Revised:2025-12-09 Online:2025-12-22 Published:2025-12-22
  • About author:ZHANG Rui, born in 1987, Ph. D., professor. His research interests include intelligent information processing, automated machine learning. ZHENG Zhicheng, born in 2002, M. S. candidate. His research interests include multi-agent simulation. PAN Lihu, born in 1974, Ph. D., professor. His research interests include multi-agent simulation, image processing. GUO Huanyuan, born in 2001, M. S. candidate. His research interests include multi-agent simulation. ZHANG Linliang, born in 1984, Ph. D., senior engineer. His research interests include deep learning, machine learning, computer vision, big data mining. YAN Huimin, born in 1974, Ph. D., professor. Her research interests include ecosystem processes simulation.
  • Supported by:
    Basic Research Project of Shanxi Province (202203021221145); Joint Postgraduate Training Demonstration Base Project of Shanxi Province (2022JD11)

摘要: 针对交通仿真系统中多尺度协同建模困难与交互连续性不足的问题,设计了一种融合微观、介观与宏观的多尺度交通仿真框架。该框架以“数据驱动-尺度分类-策略执行-轨迹控制-仿真反馈”为核心逻辑,构建模块化建模体系,实现多源信息融合与行为策略解耦。通过建立介观桥梁层,打通微观行为与宏观趋势之间的双向信息通路,并融入基于社会价值导向的群体蒙特卡洛树搜索(MCTS)协同决策机制;同时,在宏观层构建动态OD(Origin-Destination)矩阵生成系统,赋予仿真系统对交通流时序演变的自适应调控能力。实验结果表明,本文方法在保证仿真效率的同时,显著提升系统行为合理性与场景适应力,与传统的单一尺度模型和无协同策略的单车决策模型相比,冲突率降低19.8%、通行率提升34.6%,为复杂交通场景下的智能协同与资源优化提供了有效的技术路径。

关键词: 多尺度, 群体蒙特卡洛树搜索协同策略, 微观轨迹规划, 时变OD生成机制, 多智能体

Abstract: To address the challenges of multi-scale collaborative modeling and insufficient interaction continuity in existing traffic simulation systems, this paper proposes a unified multi-scale traffic simulation framework integrating micro-, meso-, and macro-level modeling. The framework follows a core workflow of data-driven processing, scale classification, strategy execution, trajectory control, and simulation feedback, and establishes a modular architecture for multi-source information fusion and behavior-strategy decoupling.The framework establishes a mesoscale bridging layer that enables bidirectional state propagation between individual vehicle dynamics and network-level flow evolution, thereby mitigating scale discontinuities. A social-value–driven group Monte Carlo Tree Search (MCTS) mechanism is further incorporated to support cooperative multi-agent decision-making under heterogeneous interaction patterns. At the macroscopic level, a dynamic, time-activated Origin–Destination (OD) generation module is constructed to capture temporal variations in travel demand and to regulate system-wide flow input adaptively.Comprehensive experiments demonstrate that the proposed framework achieves substantial improvements in both behavioral plausibility and scenario adaptiveness while maintaining computational scalability. Compared with state-of-the-art baselines, the method reduces conflict occurrence by 19.8% and increases network throughput by 34.6%, highlighting its effectiveness as a robust modeling paradigm for intelligent traffic coordination and large-scale dynamic simulation. 

Key words: multi-scale, collective Monte Carlo Tree Search (MCTS) -based cooperative strategy, microscopic trajectory planning, time-varying Origin-Destination (OD) generation mechanism, multi-agent

中图分类号: