《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (7): 2180-2187.DOI: 10.11772/j.issn.1001-9081.2024070951
收稿日期:2024-07-05
									
				
											修回日期:2024-10-14
									
				
											接受日期:2024-10-16
									
				
											发布日期:2025-07-10
									
				
											出版日期:2025-07-10
									
				
			通讯作者:
					张长伦
							作者简介:陈丹阳(1999—),女,山东临沂人,硕士研究生,主要研究方向:图神经网络
				
							基金资助:
        
                                                                                            Danyang CHEN, Changlun ZHANG( )
)
			  
			
			
			
                
        
    
Received:2024-07-05
									
				
											Revised:2024-10-14
									
				
											Accepted:2024-10-16
									
				
											Online:2025-07-10
									
				
											Published:2025-07-10
									
			Contact:
					Changlun ZHANG   
							About author:CHEN Danyang, born in 1999, M. S. candidate. Her research interests include graph neural network.				
							Supported by:摘要:
深度图神经网络(GNN)旨在捕捉复杂网络中的局部和全局特征,从而缓解图结构数据中的信息传递瓶颈。然而,现有的深度GNN模型常常面临特征过度相关的问题。因此,提出一种多尺度去相关图卷积网络(Multi-Deprop)模型。该模型包含特征传播和特征变换两种操作。在特征传播操作中,引入多尺度去相关参数,以使网络在传播过程中维持低层网络的高去相关性以及高层网络的弱去相关性,从而适应不同层级特征处理的需求。在特征变换操作中,引入正交正则化与最大信息化损失,其中:正交正则化损失保持特征独立性,最大信息化则最大化输入和表示之间的互信息,从而降低特征信息的冗余。最后,在7个节点分类的数据集上把所提模型与4个基准模型进行对比实验。实验结果表明, Multi-Deprop模型在大多数的2~32层的模型中能取得更优的节点分类准确率。特别是在Cora数据集上, Multi-Deprop模型的4~32层网络模型准确率相较于基准模型Deprop提升了0.80%~13.28%,即Multi-Deprop模型一定程度上解决了深层网络性能下降的问题。而在特征矩阵的相关性分析上,在Cora数据集上使用Multi-Deprop深层模型获得的特征矩阵相关性在0.40左右,即特征矩阵属于弱相关,说明Multi-Deprop模型极大地缓解了过相关现象。消融实验及损失可视化实验的结果表明,两个操作的改进均对模型性能有一定的提升作用。可见, Multi-Deprop模型能在保证高分类准确率的同时,显著降低深度网络中的特征冗余现象,具有较好的泛化性能和实用性。
中图分类号:
陈丹阳, 张长伦. 多尺度去相关的图卷积网络模型[J]. 计算机应用, 2025, 45(7): 2180-2187.
Danyang CHEN, Changlun ZHANG. Multi-scale decorrelation graph convolutional network model[J]. Journal of Computer Applications, 2025, 45(7): 2180-2187.
| 类型 | 数据集 | 节点数 | 边数 | 特征数 | 类别数 | 
|---|---|---|---|---|---|
| 同质图 | Cora | 2 708 | 5 429 | 1 433 | 7 | 
| CiteSeer | 3 327 | 4 732 | 3 703 | 6 | |
| PubMed | 19 717 | 44 338 | 500 | 3 | |
| 异质图 | Chameleon | 2 277 | 36 101 | 2 325 | 4 | 
| Texas | 183 | 309 | 1 703 | 5 | |
| Cornell | 183 | 298 | 1 703 | 5 | |
| Wisconsin | 251 | 499 | 1 703 | 5 | 
表1 实验中使用的数据集
Tab. 1 Datasets used in experiments
| 类型 | 数据集 | 节点数 | 边数 | 特征数 | 类别数 | 
|---|---|---|---|---|---|
| 同质图 | Cora | 2 708 | 5 429 | 1 433 | 7 | 
| CiteSeer | 3 327 | 4 732 | 3 703 | 6 | |
| PubMed | 19 717 | 44 338 | 500 | 3 | |
| 异质图 | Chameleon | 2 277 | 36 101 | 2 325 | 4 | 
| Texas | 183 | 309 | 1 703 | 5 | |
| Cornell | 183 | 298 | 1 703 | 5 | |
| Wisconsin | 251 | 499 | 1 703 | 5 | 
| 模型 | 层数 | 准确率/% | ||||||
|---|---|---|---|---|---|---|---|---|
| Cora | CiteSeer | Pubmed | Texas | Cornell | Wisconsin | Chameleon | ||
| GCN | 2 | 87.73 | 77.67 | 86.11 | 64.19 | 51.85 | 64.67 | 57.03 | 
| 4 | 86.30 | 73.39 | 86.12 | 62.16 | 50.93 | 53.33 | 60.88 | |
| 8 | 83.44 | 24.55 | 73.10 | 59.46 | 52.31 | 53.33 | 50.11 | |
| 16 | 30.86 | 24.32 | 41.26 | 60.36 | 52.78 | 52.00 | 44.01 | |
| 32 | 31.04 | 23.27 | 41.33 | 57.21 | 52.78 | 51.67 | 44.45 | |
| GAT | 2 | 86.90 | 76.13 | 85.34 | 57.66 | 46.76 | 62.33 | 64.56 | 
| 4 | 88.01 | 73.20 | 84.99 | 55.41 | 43.52 | 56.67 | 59.18 | |
| 8 | 76.66 | 21.02 | 39.93 | 54.05 | 44.44 | 47.67 | 22.86 | |
| 16 | 30.26 | 21.02 | 39.93 | 54.05 | 44.44 | 48.00 | 22.86 | |
| 32 | 30.26 | 21.02 | 39.93 | 54.05 | 44.44 | 48.00 | 22.86 | |
| Decorr | 2 | 87.78 | 77.70 | 84.80 | 64.86 | 50.69 | 61.00 | 57.47 | 
| 4 | 86.76 | 74.66 | 85.98 | 63.51 | 50.69 | 50.50 | 60.99 | |
| 8 | 85.56 | 73.05 | 82.25 | 56.76 | 50.00 | 55.00 | 50.44 | |
| 16 | 41.14 | 23.05 | 71.44 | 57.43 | 45.83 | 56.00 | 44.07 | |
| 32 | 42.85 | 22.90 | 57.07 | 54.05 | 44.44 | 52.00 | 39.34 | |
| Deprop | 2 | 87.22 | 74.06 | 87.79 | 71.62 | 72.01 | 65.00 | 64.18 | 
| 4 | 87.45 | 72.15 | 83.76 | 74.32 | 68.06 | 60.00 | 66.26 | |
| 8 | 86.72 | 74.02 | 41.30 | 68.92 | 58.33 | 65.50 | 57.25 | |
| 16 | 81.50 | 69.44 | 30.38 | 60.81 | 50.00 | 53.00 | 52.86 | |
| 32 | 57.29 | 31.83 | 39.93 | 70.27 | 48.61 | 56.00 | 44.84 | |
| Multi-Deprop | 2 | 87.27 | 74.96 | 89.59 | 72.97 | 72.22 | 66.00 | 65.71 | 
| 4 | 88.15 | 72.07 | 87.12 | 75.68 | 65.28 | 61.00 | 66.81 | |
| 8 | 87.92 | 76.80 | 84.90 | 70.27 | 62.50 | 63.00 | 61.65 | |
| 16 | 85.29 | 73.54 | 76.95 | 66.22 | 58.33 | 65.00 | 53.63 | |
| 32 | 64.90 | 48.61 | 63.37 | 62.16 | 51.39 | 54.00 | 50.88 | |
表2 不同层数的节点分类准确率
Tab. 2 Node classification accuracies with different layers
| 模型 | 层数 | 准确率/% | ||||||
|---|---|---|---|---|---|---|---|---|
| Cora | CiteSeer | Pubmed | Texas | Cornell | Wisconsin | Chameleon | ||
| GCN | 2 | 87.73 | 77.67 | 86.11 | 64.19 | 51.85 | 64.67 | 57.03 | 
| 4 | 86.30 | 73.39 | 86.12 | 62.16 | 50.93 | 53.33 | 60.88 | |
| 8 | 83.44 | 24.55 | 73.10 | 59.46 | 52.31 | 53.33 | 50.11 | |
| 16 | 30.86 | 24.32 | 41.26 | 60.36 | 52.78 | 52.00 | 44.01 | |
| 32 | 31.04 | 23.27 | 41.33 | 57.21 | 52.78 | 51.67 | 44.45 | |
| GAT | 2 | 86.90 | 76.13 | 85.34 | 57.66 | 46.76 | 62.33 | 64.56 | 
| 4 | 88.01 | 73.20 | 84.99 | 55.41 | 43.52 | 56.67 | 59.18 | |
| 8 | 76.66 | 21.02 | 39.93 | 54.05 | 44.44 | 47.67 | 22.86 | |
| 16 | 30.26 | 21.02 | 39.93 | 54.05 | 44.44 | 48.00 | 22.86 | |
| 32 | 30.26 | 21.02 | 39.93 | 54.05 | 44.44 | 48.00 | 22.86 | |
| Decorr | 2 | 87.78 | 77.70 | 84.80 | 64.86 | 50.69 | 61.00 | 57.47 | 
| 4 | 86.76 | 74.66 | 85.98 | 63.51 | 50.69 | 50.50 | 60.99 | |
| 8 | 85.56 | 73.05 | 82.25 | 56.76 | 50.00 | 55.00 | 50.44 | |
| 16 | 41.14 | 23.05 | 71.44 | 57.43 | 45.83 | 56.00 | 44.07 | |
| 32 | 42.85 | 22.90 | 57.07 | 54.05 | 44.44 | 52.00 | 39.34 | |
| Deprop | 2 | 87.22 | 74.06 | 87.79 | 71.62 | 72.01 | 65.00 | 64.18 | 
| 4 | 87.45 | 72.15 | 83.76 | 74.32 | 68.06 | 60.00 | 66.26 | |
| 8 | 86.72 | 74.02 | 41.30 | 68.92 | 58.33 | 65.50 | 57.25 | |
| 16 | 81.50 | 69.44 | 30.38 | 60.81 | 50.00 | 53.00 | 52.86 | |
| 32 | 57.29 | 31.83 | 39.93 | 70.27 | 48.61 | 56.00 | 44.84 | |
| Multi-Deprop | 2 | 87.27 | 74.96 | 89.59 | 72.97 | 72.22 | 66.00 | 65.71 | 
| 4 | 88.15 | 72.07 | 87.12 | 75.68 | 65.28 | 61.00 | 66.81 | |
| 8 | 87.92 | 76.80 | 84.90 | 70.27 | 62.50 | 63.00 | 61.65 | |
| 16 | 85.29 | 73.54 | 76.95 | 66.22 | 58.33 | 65.00 | 53.63 | |
| 32 | 64.90 | 48.61 | 63.37 | 62.16 | 51.39 | 54.00 | 50.88 | |
| 模型 | Cora | Citeseer | Pubmed | Texas | Cornell | Wisconsin | Chameleon | 
|---|---|---|---|---|---|---|---|
| GCN | 87.73(2) | 77.67(2) | 86.12(4) | 64.19(2) | 52.78(16) | 64.67(2) | 60.88(4) | 
| GAT | 88.01(4) | 76.13(2) | 85.34(2) | 57.66(2) | 46.76(2) | 62.33(2) | 64.56(2) | 
| Decorr | 87.78(2) | 77.70(2) | 85.98(4) | 64.86(2) | 50.69(2) | 61.00(2) | 60.99(4) | 
| Deprop | 87.45(4) | 74.06(2) | 87.79(2) | 74.32(4) | 72.01(2) | 65.50(16) | 66.26(4) | 
| Multi_Deprop | 88.15(4) | 76.80(8) | 89.59(2) | 75.68(4) | 72.22(2) | 66.00(2) | 66.81(4) | 
表3 各模型的节点分类准确率
Tab. 3 Node classification accuracies of each models
| 模型 | Cora | Citeseer | Pubmed | Texas | Cornell | Wisconsin | Chameleon | 
|---|---|---|---|---|---|---|---|
| GCN | 87.73(2) | 77.67(2) | 86.12(4) | 64.19(2) | 52.78(16) | 64.67(2) | 60.88(4) | 
| GAT | 88.01(4) | 76.13(2) | 85.34(2) | 57.66(2) | 46.76(2) | 62.33(2) | 64.56(2) | 
| Decorr | 87.78(2) | 77.70(2) | 85.98(4) | 64.86(2) | 50.69(2) | 61.00(2) | 60.99(4) | 
| Deprop | 87.45(4) | 74.06(2) | 87.79(2) | 74.32(4) | 72.01(2) | 65.50(16) | 66.26(4) | 
| Multi_Deprop | 88.15(4) | 76.80(8) | 89.59(2) | 75.68(4) | 72.22(2) | 66.00(2) | 66.81(4) | 
 
																													图3 Cora数据集上不同层数的GCN和Multi-Deprop模型导出的节点表示的t-SNE可视化比较
Fig. 3 t-SNE visual comparison of node representations derived by GCN and Multi-Deprop models with different layers on Core dataset
| [1] | TAKAHASHI T. Indirect adversarial attacks via poisoning neighbors for graph convolutional networks [C]// Proceedings of the 2019 IEEE International Conference on Big Data. Piscataway: IEEE, 2019: 1395-1400. | 
| [2] | ABBOUD R, CEYLAN İ İ, GROHE M, et al. The surprising power of graph neural networks with random node initialization [C]// Proceedings of the 30th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2021: 2112-2118. | 
| [3] | MIN S, GAO Z, PENG J, et al. STGSN — a spatial-temporal graph neural network framework for time-evolving social networks [J]. Knowledge-Based Systems, 2021, 214: No.106746. | 
| [4] | JIN D, YU Z, JIAO P, et al. A survey of community detection approaches: from statistical modeling to deep learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(2): 1149-1170. | 
| [5] | JIANG W, LUO J. Graph neural network for traffic forecasting: a survey [J]. Expert Systems with Applications, 2022, 207: No.117921. | 
| [6] | FAN W, MA Y, LI Q, et al. Graph neural networks for social recommendation [C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 417-426. | 
| [7] | GAO C, WANG X, HE X, et al. Graph neural networks for recommender system [C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 1623-1625. | 
| [8] | GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry [C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1263-1272. | 
| [9] | LI Q, HAN Z, WU X M. Deeper insights into graph convolutional networks for semi-supervised learning [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 3538-3545. | 
| [10] | ZHAO L, AKOGLU L. PairNorm: tackling oversmoothing in GNNs [EB/OL]. [2024-06-09]. . | 
| [11] | WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. | 
| [12] | JIN W, LIU X, MA Y, et al. Feature overcorrelation in deep graph neural networks: a new perspective [C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 709-719. | 
| [13] | CHEN M, WEI Z, HUANG Z, et al. Simple and deep graph convolutional networks [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 1725-1735. | 
| [14] | GUO Y, WEI Z. Clenshaw graph neural networks [C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 614-625. | 
| [15] | GAO Z, BHATTACHARYA S, ZHANG L, et al. Training robust graph neural networks with topology adaptive edge dropping [EB/OL]. [2024-06-09]. . | 
| [16] | GUO K, ZHOU K, HU X, et al. Orthogonal graph neural networks [C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 3996-4004. | 
| [17] | LIU H, HAN H, JIN W, et al. Enhancing graph representations learning with decorrelated propagation [C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 1466-1476. | 
| [18] | XU K, LI C, TIAN Y, et al. Representation learning on graphs with jumping knowledge networks [C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 5453-5462. | 
| [19] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2024-06-09]. . | 
| [20] | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. [2024-06-09]. . | 
| [21] | TAUBIN G. A signal processing approach to fair surface design [C]// Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1995: 351-358. | 
| [22] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. | 
| [23] | WU X, AJORLOU A, WU Z, et al. Demystifying oversmoothing in attention-based graph neural networks [C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 35084-35106. | 
| [24] | COGSWELL M, AHMED F, GIRSHICK R, et al. Reducing overfitting in deep networks by decorrelating representations [EB/OL]. [2024-06-09]. . | 
| [25] | RODRÍGUEZ P, GONZÀLEZ J, CUCURULL G, et al. Regularizing CNNs with locally constrained decorrelations [EB/OL]. [2024-06-09]. . | 
| [26] | GUO X, WANG Y, DU T, et al. ContraNorm: a contrastive learning perspective on oversmoothing and beyond [EB/OL]. [2024-06-09]. . | 
| [27] | HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1025-1035. | 
| [28] | BENESTY J, CHEN J, HUANG Y, et al. Pearson correlation coefficient [M]// Noise reduction in speech processing, STSP 2. Berlin: Springer, 2009: 1-4. | 
| [29] | SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data [J]. AI Magazine, 2008, 29(3): 93-106. | 
| [30] | ROZEMBERCZKI B, ALLEN C, SARKAR R. Multi-scale attributed node embedding [J]. Journal of Complex Network, 2021, 9(2): No.cnab014. | 
| [31] | PEI H, WEI B, CHANG K C C, et al. Geom-GCN: geometric graph convolutional networks [EB/OL]. [2024-06-09]. . | 
| [32] | VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE [J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. | 
| [1] | 豆旭梦 解滨 张朝晖 赵振刚 段菡煜 郭澳磊. 基于结构-网络协同特征与网格注意力增强KAN的药物靶标相互作用预测[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. | 
| [2] | 赵海华 胡怡君 唐瑞 莫先. 基于语义融合和对比增强的多模态推荐方法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. | 
| [3] | 蒋权, 黄文清, 苟志勇. 基于等变图神经网络的拉格朗日粒子流模拟[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2666-2671. | 
| [4] | 俞凯乐, 廖家俊, 毛嘉莉, 黄小鹏. 多约束条件下钢铁物流车货匹配的多目标优化[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2477-2483. | 
| [5] | 刘馨瑶 梁军 龙嘉濠 颜仁梁. 基于特征融合和通道信息补偿的中草药细粒度图像分类[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. | 
| [6] | 蒋沛宇, 王永光, 任亚亭, 李硕晨, 谭火彬. 基于测量不确定度表示指南的红外目标检测不确定度测量方案[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2162-2168. | 
| [7] | 孙雨阳, 张敏婕, 胡婕. 基于语义前缀微调的零样本对话状态跟踪领域迁移模型[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2221-2228. | 
| [8] | 李岚皓, 严皓钧, 周号益, 孙庆赟, 李建欣. 基于神经网络的多尺度信息融合时间序列长期预测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1776-1783. | 
| [9] | 闫龙博, 毛文涛, 仲志鸿, 范黎林. 面向城市排水管网缺陷诊断的鲁棒无监督多任务异常检测方法[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1833-1840. | 
| [10] | 熊前龙 秦进. 混合启发信息指导神经网络架构搜索算法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. | 
| [11] | 姜勇维 陈晓清 付麟杰. 基于频谱分解的高频保持医学图像弹性配准模型[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. | 
| [12] | 白晓磊 张雪元 王智永 全力 刘欣. 基于Mamba模型的区域电价预测方法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. | 
| [13] | 李雪莹, 杨琨, 涂国庆, 刘树波. 基于局部增强的时序数据对抗样本生成方法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1573-1581. | 
| [14] | 陈满, 杨小军, 杨慧敏. 基于图卷积网络和终点诱导的行人轨迹预测[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1480-1487. | 
| [15] | 赵子杰 王毅 唐瑞卿 杨晨 李娟. 基于改进YOLOv11的无人机目标检测算法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||