计算机应用 ›› 2011, Vol. 31 ›› Issue (05): 1382-1386.DOI: 10.3724/SP.J.1087.2011.01382
赵宏霞1,王新海1,杨皎平2
ZHAO Hong-xia1, WANG Xin-hai1, YANG Jiao-ping2
摘要: 为解决协同过滤推荐(CFR)算法中的数据量过大和数据稀疏性的问题,采用因子分析的方法对数据降维,并使用回归分析方法预测待评估值,既减少了数据量又最大限度保留了信息。该算法首先,采用因子分析的方法将用户和项目降维为若干用户因子和若干项目因子;然后,以目标用户为因变量,以用户因子为自变量建立一个回归模型,并且以待评价项目为因变量,以项目因子为自变量建立另一个回归模型,进而得到目标用户在待评项目上的两个预测值;最后,通过两者的加权得到最终的预测值。实验仿真证实了算法的可行性和有效性。实验结果表明,该算法比基于项目的协同过滤推荐算法在精确度上有所提高。