《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (3): 876-882.DOI: 10.11772/j.issn.1001-9081.2023030299
收稿日期:
2023-03-23
修回日期:
2023-05-30
接受日期:
2023-06-02
发布日期:
2023-06-20
出版日期:
2024-03-10
通讯作者:
李希娜
作者简介:
周景贤(1981—),男, 河南信阳人,副研究员,博士,主要研究方向:安全认证协议、数据隐私保护、物联网安全架构;
基金资助:
Jingxian ZHOU1, Xina LI2()
Received:
2023-03-23
Revised:
2023-05-30
Accepted:
2023-06-02
Online:
2023-06-20
Published:
2024-03-10
Contact:
Xina LI
About author:
ZHOU Jingxian, born in 1981, Ph. D., associate research fellow. His research interests include security authentication protocol, data privacy protection, security architecture for internet of things.
Supported by:
摘要:
针对无人机(UAV)在图像识别时易受环境干扰,而传统信号识别难以准确提取特征且实时性较差的问题,提出一种基于改进卷积神经网络(CNN)和射频(RF)指纹的无人机检测识别方法。首先,使用通用软件无线电外设(USRP)捕获环境中的无线电信号,经过多分辨率分析获取偏差值,检测是否为无人机射频信号;其次,将检测到的无人机射频信号经过小波变换和主成分分析(PCA)处理,获得射频信号频谱,作为神经网络的输入;最后,构建轻量级残差神经网络(LRCNN),输入射频频谱进行网络训练,进行无人机的分类识别。实验结果表明,所提方法可以有效检测并识别无人机信号,平均识别精度可达84%;在信噪比(SNR)大于20 dB时,LRCNN的识别精度达到了88%,相较于支持向量机(SVM)、原始OracleCNN分别提高31和7个百分点,在识别精度和鲁棒性方面比这两种方法均有所提升。
中图分类号:
周景贤, 李希娜. 基于改进卷积神经网络和射频指纹的无人机检测与识别[J]. 计算机应用, 2024, 44(3): 876-882.
Jingxian ZHOU, Xina LI. UAV detection and recognition based on improved convolutional neural network and radio frequency fingerprint[J]. Journal of Computer Applications, 2024, 44(3): 876-882.
参数 | 值 |
---|---|
卷积层1 | 卷积核 |
ReLU | Max(0,x) |
残差块卷积层1 | 卷积核 |
残差块卷积层2 | 卷积核 |
全局平均池化层 | |
全连接层1(FC1) | 神经元80 |
全连接层2(FC2) | 神经元4 |
dropout率 | 50% |
I2正则化参数 | λ=0.000 1 |
表1 LRCNN参数
Tab. 1 Parameters of LRCNN
参数 | 值 |
---|---|
卷积层1 | 卷积核 |
ReLU | Max(0,x) |
残差块卷积层1 | 卷积核 |
残差块卷积层2 | 卷积核 |
全局平均池化层 | |
全连接层1(FC1) | 神经元80 |
全连接层2(FC2) | 神经元4 |
dropout率 | 50% |
I2正则化参数 | λ=0.000 1 |
名称 | 含义 | 取值 |
---|---|---|
Learning_rate | 学习速率、学习步长 | 0.000 1 |
Beta1 | 一阶矩估计的指数衰减因子 | 0.990 0 |
Beta2 | 二阶矩估计的指数衰减因子 | 0.990 0 |
Epsilon | 避免除0参数(≥0) | 0.001 0 |
Use_locking | 为true时,更新操作使用锁 | — |
表2 Adam随机梯度下降算法参数
Tab. 2 Parameters of Adam stochastic gradient descent algorithm
名称 | 含义 | 取值 |
---|---|---|
Learning_rate | 学习速率、学习步长 | 0.000 1 |
Beta1 | 一阶矩估计的指数衰减因子 | 0.990 0 |
Beta2 | 二阶矩估计的指数衰减因子 | 0.990 0 |
Epsilon | 避免除0参数(≥0) | 0.001 0 |
Use_locking | 为true时,更新操作使用锁 | — |
batch_size | 训练时间/min | 训练精度/% |
---|---|---|
2 | 35 | 80.6 |
4 | 20 | 84.2 |
8 | 12 | 67.8 |
表3 不同batch_size对应的训练精度与时间
Tab. 3 Training time and accuracy with different batch_size
batch_size | 训练时间/min | 训练精度/% |
---|---|---|
2 | 35 | 80.6 |
4 | 20 | 84.2 |
8 | 12 | 67.8 |
无人机数 | 不同算法的识别精度/% | ||
---|---|---|---|
LRCNN | OracleCNN | SVM | |
2 | 88.2 | 84.1 | 63.3 |
4 | 86.2 | 81.3 | 60.6 |
8 | 85.2 | 78.7 | 57.3 |
16 | 83.9 | 75.9 | 52.4 |
表4 无人机数量对识别精度的影响
Tab. 4 Influence of number of UAVs on recognition accuracy
无人机数 | 不同算法的识别精度/% | ||
---|---|---|---|
LRCNN | OracleCNN | SVM | |
2 | 88.2 | 84.1 | 63.3 |
4 | 86.2 | 81.3 | 60.6 |
8 | 85.2 | 78.7 | 57.3 |
16 | 83.9 | 75.9 | 52.4 |
1 | WANG R, LI Z, TANG J, et al. RF fingerprint identification of commercial UAV in outdoor environment [C]// Proceedings of the 2022 International Conference on Computing, Communication, Perception and Quantum Technology. Piscataway: IEEE, 2022: 367-371. 10.1109/ccpqt56151.2022.00070 |
2 | XU X, ZENG Y, GUAN Y L, et al. Overcoming endurance issue: UAV-enabled communications with proactive caching [J]. IEEE Journal on Selected Areas in Communications, 2018, 36(6): 1231-1244. 10.1109/jsac.2018.2844979 |
3 | 李超群,王金明.基于短时傅里叶变换的无人机射频指纹分类识别[J].通信技术,2022,55(9):1202-1207. 10.3969/j.issn.1002-0802.2022.09.014 |
LI C Q, WANG J M. Classification and identification of UAV RF fingerprints based on short time Fourier transform [J]. Communication Technology, 2022, 55(9): 1202-1207. 10.3969/j.issn.1002-0802.2022.09.014 | |
4 | J-P HUTTNER, FRIEDRICH M. Current challenges in mission planning systems for UAVs: a systematic review [C]// Proceedings of the 2023 Integrated Communication, Navigation and Surveillance Conference. Piscataway: IEEE, 2023: 1-7. 10.1109/icns58246.2023.10124299 |
5 | SU Y, ZHOU J, GUO Z. A trust-based security scheme for 5G UAV communication systems [C]// Proceedings of the 2020 IEEE International Conference on Dependable, Autonomic and Secure Computing, International Conference on Pervasive Intelligence and Computing, International Conference on Cloud and Big Data Computing, International Conference Conference on Cyber Science and Technology Congress. Piscataway: IEEE, 2020: 371-374. 10.1109/dasc-picom-cbdcom-cyberscitech49142.2020.00072 |
6 | PIRKER D, FISCHER T, LESJAK C, et al. Global and secured UAV authentication system based on hardware-security [C]// Proceedings of the 8th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering. Piscataway: IEEE, 2020: 84-89. 10.1109/mobilecloud48802.2020.00020 |
7 | URETEN O, SERINKEN N. Wireless security through RF fingerprinting [J]. Canadian Journal of Electrical and Computer Engineering, 2007, 32(1): 27-33. 10.1109/cjece.2007.364330 |
8 | SANKHE K, BELGIOVINE M, ZHOU F, et al. ORACLE: optimized radio classification through convolutional neural networks[C]// Proceedings of the 2019 IEEE Conference on Computer Communications. Piscataway: IEEE, 2019: 370-378. 10.1109/infocom.2019.8737463 |
9 | SONG L, GAO Z, HUANG J, et al. A lightweight radio frequency fingerprint extraction scheme for device identification [C]// Proceedings of the 2023 IEEE Wireless Communications and Networking Conference. Piscataway: IEEE, 2023: 1-5. 10.1109/wcnc55385.2023.10118789 |
10 | YANG Y, YAN T. RF fingerprint recognition method based on DBN-SVM [C]// Proceedings of the IEEE 10th International Conference on Information, Communication and Networks. Piscataway: IEEE, 2022: 572-577. 10.1109/icicn56848.2022.10006500 |
11 | LI Y, CHEN L, CHEN J, et al. A low complexity feature extraction for the RF fingerprinting process [C]// Proceedings of the 2018 IEEE Conference on Communications and Network Security. Piscataway: IEEE, 2018: 1-2. 10.1109/cns.2018.8433156 |
12 | KENNEDY I O, SCANLON P, BUDDHIKOT M M. Passive steady state RF fingerprinting: a cognitive technique for scalable deployment of co-channel femto cell underlays [C]// Proceedings of the 3rd IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks. Piscataway: IEEE, 2008: 1-12. 10.1109/dyspan.2008.46 |
13 | O’SHEA J, CORGAN J, CLANCY T C. Unsupervised representation learning of structured radio communication signals [C]// Proceedings of the 1st International Workshop on Sensing, Processing and Learning for Intelligent Machines. Piscataway: IEEE, 2016: 1-5. 10.1109/splim.2016.7528397 |
14 | FENG J, TANG X, ZHANG B, et al. A lightweight deep learning RF fingerprint recognition method [C]// Proceedings of the 4th International Conference on Communications, Information System and Computer Engineering. Piscataway: IEEE, 2022: 452-457. 10.1109/cisce55963.2022.9851177 |
15 | LI C, WANG J, WANG W, et al. RF-based on feature fusion and convolutional neural network classification of UAVs [C]// Proceedings of the IEEE 8th International Conference on Computer and Communications. Piscataway: IEEE, 2022: 1899-1904. 10.1109/iccc56324.2022.10065895 |
16 | XU J, ZHAO H. Detection to primary user based on radio frequency fingerprint in cognitive radio [C]// Proceedings of the 2nd International Congress on Image and Signal Processing. Piscataway: IEEE, 2009: 1-5. 10.1109/cisp.2009.5302025 |
17 | NGUYEN P, TRUONG H, RAVINDRANATHAN M, et al. Matthan: drone presence detection by identifying physical signatures in the drone’s RF communication [C]// Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services. New York: ACM, 2017: 211-224. 10.1145/3081333.3081354 |
18 | EZUMA M, ERDEN F, KUMAR ANJINAPPA C, et al. Detection and classification of UAVs using RF fingerprints in the presence of Wi-Fi and Bluetooth interference [J]. IEEE Open Journal of the Communications Society, 2022, 1: 60-76. |
19 | NIE W, HAN Z-C, ZHOU M, et al. UAV detection and identification based on WiFi signal and RF fingerprint [J]. IEEE Sensors Journal, 2021, 21(12): 13540-13550. 10.1109/jsen.2021.3068444 |
20 | 李雨珊,谢非佚,陈松林,等.适合终端的射频指纹信号特征提取及识别[J].通信技术,2018,51(1):63-66. 10.3969/j.issn.1002-0802.2018.01.012 |
LI Y S, XIE F Y, CHEN S L, et al. Feature extraction and recognition of radio frequency fingerprint signal suitable for terminal [J]. Communication Technology, 2018, 51(1): 63-66. 10.3969/j.issn.1002-0802.2018.01.012 | |
21 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
22 | SHU Y, XU Y. End-to-end captcha recognition using deep CNN-RNN network [C]// Proceedings of the IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference. Piscataway: IEEE, 2019: 54-58. 10.1109/imcec46724.2019.8983895 |
[1] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[2] | 李云, 王富铕, 井佩光, 王粟, 肖澳. 基于不确定度感知的帧关联短视频事件检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2903-2910. |
[3] | 赵宇博, 张丽萍, 闫盛, 侯敏, 高茂. 基于改进分段卷积神经网络和知识蒸馏的学科知识实体间关系抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2421-2429. |
[4] | 陈虹, 齐兵, 金海波, 武聪, 张立昂. 融合1D-CNN与BiGRU的类不平衡流量异常检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2493-2499. |
[5] | 张春雪, 仇丽青, 孙承爱, 荆彩霞. 基于两阶段动态兴趣识别的购买行为预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2365-2371. |
[6] | 高阳峄, 雷涛, 杜晓刚, 李岁永, 王营博, 闵重丹. 基于像素距离图和四维动态卷积网络的密集人群计数与定位方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2233-2242. |
[7] | 王东炜, 刘柏辰, 韩志, 王艳美, 唐延东. 基于低秩分解和向量量化的深度网络压缩方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 1987-1994. |
[8] | 黄梦源, 常侃, 凌铭阳, 韦新杰, 覃团发. 基于层间引导的低光照图像渐进增强算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1911-1919. |
[9] | 李健京, 李贯峰, 秦飞舟, 李卫军. 基于不确定知识图谱嵌入的多关系近似推理模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1751-1759. |
[10] | 沈君凤, 周星辰, 汤灿. 基于改进的提示学习方法的双通道情感分析模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1796-1806. |
[11] | 李牧, 骆宇, 柯熙政. 基于调频连续波雷达的人体生命体征检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1978-1986. |
[12] | 姚迅, 秦忠正, 杨捷. 生成式标签对抗的文本分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1781-1785. |
[13] | 孙敏, 成倩, 丁希宁. 基于CBAM-CGRU-SVM的Android恶意软件检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1539-1545. |
[14] | 高文烁, 陈晓云. 基于节点结构的点云分类网络[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1471-1478. |
[15] | 席治远, 唐超, 童安炀, 王文剑. 基于双路时空网络的驾驶员行为识别[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1511-1519. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||