《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (4): 1027-1034.DOI: 10.11772/j.issn.1001-9081.2023050649
所属专题: 第九届全国智能信息处理学术会议(NCIIP 2023)
• 第九届全国智能信息处理学术会议(NCIIP 2023) • 上一篇 下一篇
收稿日期:
2023-05-24
修回日期:
2023-07-08
接受日期:
2023-07-14
发布日期:
2024-04-22
出版日期:
2024-04-10
通讯作者:
张兴鹏
作者简介:
肖斌(1978—),男,重庆人,教授,硕士,CCF会员,主要研究方向:软件工程、企业信息化基金资助:
Bin XIAO1, Yun GAN1, Min WANG2, Xingpeng ZHANG1(), Zhaoxing WANG3
Received:
2023-05-24
Revised:
2023-07-08
Accepted:
2023-07-14
Online:
2024-04-22
Published:
2024-04-10
Contact:
Xingpeng ZHANG
About author:
XIAO Bin, born in 1978, M. S., professor. His research interests include software engineering, enterprise informatization.Supported by:
摘要:
网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端口注意力模块(PAM)和通道空间注意力模块(CBAM)的网络异常流量检测模型。首先,将原始网络流量作为PAM的输入,分离得到端口号属性送入全连接层,得到学习后的端口注意力权重值,并与其他流量属性点乘,输出端口注意力后的流量数据;其次,将流量数据转换成灰度图,利用CNN和CBAM更充分地提取特征图在通道和空间上的信息;最后,使用焦点损失函数解决数据不平衡的问题。所提PAM具有参数量少、即插即用和普遍适用的优点。在CICIDS2017数据集上,所提模型的异常流量检测二分类任务准确率为99.18%,多分类任务准确率为99.07%,对只有少数训练样本的类别也有较高的识别率。
中图分类号:
肖斌, 甘昀, 汪敏, 张兴鹏, 王照星. 基于端口注意力与通道空间注意力的网络异常流量检测[J]. 计算机应用, 2024, 44(4): 1027-1034.
Bin XIAO, Yun GAN, Min WANG, Xingpeng ZHANG, Zhaoxing WANG. Network abnormal traffic detection based on port attention and convolutional block attention module[J]. Journal of Computer Applications, 2024, 44(4): 1027-1034.
端口号 | 正常流量数 | 异常流量数 | 异常概率/% |
---|---|---|---|
53 | 957 812 | 0 | 0.00 |
443 | 505 087 | 240 | 0.05 |
80 | 235 536 | 382 288 | 61.88 |
123 | 23 879 | 0 | 0.00 |
22 | 10 781 | 6 140 | 36.29 |
137 | 7 913 | 0 | 0.00 |
21 | 5 332 | 8 178 | 60.53 |
445 | 1 932 | 179 | 8.48 |
8080 | 1 356 | 1 415 | 51.06 |
444 | 0 | 256 | 100.00 |
表 1 端口数据统计表
Tab. 1 Statistical table of port data
端口号 | 正常流量数 | 异常流量数 | 异常概率/% |
---|---|---|---|
53 | 957 812 | 0 | 0.00 |
443 | 505 087 | 240 | 0.05 |
80 | 235 536 | 382 288 | 61.88 |
123 | 23 879 | 0 | 0.00 |
22 | 10 781 | 6 140 | 36.29 |
137 | 7 913 | 0 | 0.00 |
21 | 5 332 | 8 178 | 60.53 |
445 | 1 932 | 179 | 8.48 |
8080 | 1 356 | 1 415 | 51.06 |
444 | 0 | 256 | 100.00 |
PAM | 全连接层 | ||||
---|---|---|---|---|---|
隐藏层1 | 隐藏层2 | 准确率/% | 隐藏层1 | 隐藏层2 | 准确率/% |
4 | 8 | 97.95 | 16 | 32 | 98.52 |
8 | 8 | 98.63 | 32 | 32 | 98.71 |
8 | 16 | 99.07 | 32 | 64 | 99.07 |
16 | 16 | 98.84 | 64 | 32 | 98.86 |
16 | 8 | 98.89 | 64 | 64 | 98.64 |
32 | 32 | 98.21 | 64 | 128 | 98.48 |
表 2 隐藏层消融实验结果
Tab. 2 Ablation experiment results of hidden layers
PAM | 全连接层 | ||||
---|---|---|---|---|---|
隐藏层1 | 隐藏层2 | 准确率/% | 隐藏层1 | 隐藏层2 | 准确率/% |
4 | 8 | 97.95 | 16 | 32 | 98.52 |
8 | 8 | 98.63 | 32 | 32 | 98.71 |
8 | 16 | 99.07 | 32 | 64 | 99.07 |
16 | 16 | 98.84 | 64 | 32 | 98.86 |
16 | 8 | 98.89 | 64 | 64 | 98.64 |
32 | 32 | 98.21 | 64 | 128 | 98.48 |
注意力模块 | 准确率/% | 参数量/106 |
---|---|---|
不使用注意力 | 97.04 | 0.184 |
GAM[ | 98.35 | 0.237 |
CA[ | 98.61 | 0.193 |
SE[ | 98.83 | 0.185 |
ECA[ | 99.02 | 0.185 |
CBAM | 99.18 | 0.186 |
表 3 不同注意力模块实验结果对比
Tab. 3 Experiment result comparison of different attention modules
注意力模块 | 准确率/% | 参数量/106 |
---|---|---|
不使用注意力 | 97.04 | 0.184 |
GAM[ | 98.35 | 0.237 |
CA[ | 98.61 | 0.193 |
SE[ | 98.83 | 0.185 |
ECA[ | 99.02 | 0.185 |
CBAM | 99.18 | 0.186 |
模型 | Acc/% | Pr/% | Re/% | F1/% | FPR | 参数量/106 |
---|---|---|---|---|---|---|
CNN | 97.04 | 99.56 | 96.76 | 98.14 | 1.77 | 0.184 |
1D-CNN+LSTM[ | 97.40 | 99.69 | 97.08 | 98.37 | 1.26 | 1.217 |
ResNet50 | 92.95 | 99.04 | 92.39 | 95.60 | 4.33 | 25.560 |
CBAM-ResNet50[ | 96.70 | 98.61 | 97.25 | 97.93 | 1.85 | 28.090 |
本文模型 | 99.18 | 99.79 | 99.18 | 99.48 | 0.84 | 0.186 |
表 4 不同模型二分类结果
Tab. 4 Results of binary-class classification by different models
模型 | Acc/% | Pr/% | Re/% | F1/% | FPR | 参数量/106 |
---|---|---|---|---|---|---|
CNN | 97.04 | 99.56 | 96.76 | 98.14 | 1.77 | 0.184 |
1D-CNN+LSTM[ | 97.40 | 99.69 | 97.08 | 98.37 | 1.26 | 1.217 |
ResNet50 | 92.95 | 99.04 | 92.39 | 95.60 | 4.33 | 25.560 |
CBAM-ResNet50[ | 96.70 | 98.61 | 97.25 | 97.93 | 1.85 | 28.090 |
本文模型 | 99.18 | 99.79 | 99.18 | 99.48 | 0.84 | 0.186 |
类别 | Acc | Pr | F1 |
---|---|---|---|
BENIGN | 99.87 | 99.27 | 99.57 |
Bot | 98.80 | 88.67 | 93.46 |
DDoS | 99.86 | 99.71 | 99.78 |
GoldenEye | 67.81 | 84.13 | 75.09 |
Hulk | 97.42 | 97.38 | 97.40 |
SlowHTTP | 84.56 | 95.86 | 89.86 |
SlowLoris | 75.61 | 98.79 | 85.66 |
FtpPatator | 99.01 | 97.41 | 98.20 |
Heartbleed | 100.00 | 92.85 | 96.29 |
Infiltration | 61.53 | 100.00 | 76.19 |
PortScan | 92.01 | 99.90 | 95.79 |
SSH-Patator | 97.99 | 96.89 | 97.44 |
WebAttack | 98.69 | 94.79 | 96.70 |
表 5 多分类实验不同类别结果 (%)
Tab. 5 Result of different categories in multi-class classification experiment
类别 | Acc | Pr | F1 |
---|---|---|---|
BENIGN | 99.87 | 99.27 | 99.57 |
Bot | 98.80 | 88.67 | 93.46 |
DDoS | 99.86 | 99.71 | 99.78 |
GoldenEye | 67.81 | 84.13 | 75.09 |
Hulk | 97.42 | 97.38 | 97.40 |
SlowHTTP | 84.56 | 95.86 | 89.86 |
SlowLoris | 75.61 | 98.79 | 85.66 |
FtpPatator | 99.01 | 97.41 | 98.20 |
Heartbleed | 100.00 | 92.85 | 96.29 |
Infiltration | 61.53 | 100.00 | 76.19 |
PortScan | 92.01 | 99.90 | 95.79 |
SSH-Patator | 97.99 | 96.89 | 97.44 |
WebAttack | 98.69 | 94.79 | 96.70 |
模型 | Acc |
---|---|
RF | 96.04 |
KNN | 95.60 |
Naive Bayes | 86.51 |
CNN | 96.73 |
ResNet50 | 87.19 |
LeNet[ | 78.21 |
CBAM-ResNet50 | 92.92 |
DeepGFL[ | 94.85 |
AFM-ICNN-1D[ | 98.16 |
1DCNN-BiLSTM[ | 98.65 |
Multi-Stage Approach[ | 98.77 |
本文模型 | 99.07 |
表 6 不同模型多分类实验结果 (%)
Tab. 6 Results of multi-class classification experiments by different models
模型 | Acc |
---|---|
RF | 96.04 |
KNN | 95.60 |
Naive Bayes | 86.51 |
CNN | 96.73 |
ResNet50 | 87.19 |
LeNet[ | 78.21 |
CBAM-ResNet50 | 92.92 |
DeepGFL[ | 94.85 |
AFM-ICNN-1D[ | 98.16 |
1DCNN-BiLSTM[ | 98.65 |
Multi-Stage Approach[ | 98.77 |
本文模型 | 99.07 |
Backbone | PAM | CBAM | 准确率 | |
---|---|---|---|---|
二分类 | 多分类 | |||
CNN | 97.04 | 96.73 | ||
√ | 98.69 | 98.14 | ||
√ | 98.67 | 98.52 | ||
√ | √ | 99.18 | 99.07 | |
ResNet18 | 95.31 | 93.50 | ||
√ | 96.23 | 94.98 | ||
√ | 97.01 | 95.42 | ||
√ | √ | 97.95 | 96.39 |
表 7 消融实验结果 (%)
Tab. 7 Ablation experiment results
Backbone | PAM | CBAM | 准确率 | |
---|---|---|---|---|
二分类 | 多分类 | |||
CNN | 97.04 | 96.73 | ||
√ | 98.69 | 98.14 | ||
√ | 98.67 | 98.52 | ||
√ | √ | 99.18 | 99.07 | |
ResNet18 | 95.31 | 93.50 | ||
√ | 96.23 | 94.98 | ||
√ | 97.01 | 95.42 | ||
√ | √ | 97.95 | 96.39 |
1 | 中国互联网络信息中心. 第51 次中国互联网发展统计报告[R/OL]. [2023-06-03]. ’s internet development[R/OL]. [2023-06-03]. . |
2 | AHMED M, MAHMOOD A, HU J. A survey of network anomaly detection techniques[J]. Journal of Network and Computer Applications, 2016, 60: 19-31. 10.1016/j.jnca.2015.11.016 |
3 | BIERSACK E, CALLEGARI C, MATIJASEVIC M. Data Traffic Monitoring and Analysis: From Measurement, Classification, and Anomaly Detection to Quality of Experience[M]. Heidelberg: Springer, 2013: 21-29. 10.1007/978-3-642-36784-7 |
4 | DHOTE Y, AGRAWAL S, DEEN A J. A survey on feature selection techniques for internet traffic classification [C]// Proceedings of the 2015 International Conference on Computational Intelligence and Communication Networks. Piscataway: IEEE, 2015: 1375-1380. 10.1109/cicn.2015.267 |
5 | ZHANG H, LU G, QASSRAWI M T, et al. Feature selection for optimizing traffic classification[J]. Computer Communications, 2012, 35(12): 1457-1471. 10.1016/j.comcom.2012.04.012 |
6 | WANG W, ZHU M, ZENG X, et al. Malware traffic classification using convolutional neural network for representation learning [C]// Proceedings of the 2017 International Conference on Information Networking. Piscataway: IEEE, 2017: 712-717. 10.1109/icoin.2017.7899588 |
7 | 白雪. 基于DBN的网络流量分类的研究[D]. 呼和浩特:内蒙古大学,2015: 28-51. |
BAI X. Research on internet traffic classification using DBN[D]. Hohhot: Inner Mongolia University, 2015: 28-51. | |
8 | AGARAP A F M. A neural network architecture combining gated recurrent unit and support vector machine for intrusion detection in network traffic data [C]// Proceedings of the 2018 10th International Conference on Machine Learning and Computing. New York: ACM, 2018: 26-30. 10.1145/3195106.3195117 |
9 | ROOPAK M, TIAN G Y, CHAMBERS J. Deep learning models for cуber security in IoT networks [C]// Proceedings of the 2019 Annual Computing and Communication Workshop and Conference. Piscataway: IEEE, 2019: 0452-0457. 10.1109/ccwc.2019.8666588 |
10 | WOO S, PARK J, LEE J-Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the 2018 European Conference on Computer Vision. Cham: Springer, 2018:3-19. 10.1007/978-3-030-01234-2_1 |
11 | SHARAFALDIN I, LASHKARI A H, GHORBANI A. Toward generating a new intrusion detection dataset and intrusion traffic characterization [C]// Proceedings of the 4th International Conference on Information Systems Security and Privacy. [S.l.]: SciTePress, 2018: 108-116. 10.5220/0006639801080116 |
12 | ANDERSON J P. Computer security threat monitoring and surveillance [EB/OL]. [2023-05-01]. . |
13 | BAMAKAN S M H, WANG H, SHI Y. Ramp loss k-support vector classification-regression: a robust and sparse multi-class approach to the intrusion detection problem[J]. Knowledge-Based Systems, 2017, 126: 113-126. 10.1016/j.knosys.2017.03.012 |
14 | JHA S, TAN K, Al MAXION R. Markov chains, classifiers, and intrusion detection [C]// Proceedings of the 14th IEEE Computer Security Foundations Workshop. Piscataway: IEEE, 2001: 206-219. 10.1109/csfw.2001.930131 |
15 | SHON T, MOON J. A hybrid machine learning approach to network anomaly detection[J]. Information Sciences, 2007, 177(18): 3799-3821. 10.1016/j.ins.2007.03.025 |
16 | PAN X, LUO Y, XU Y. K-nearest neighbor based structural twin support vector machine[J]. Knowledge-Based Systems, 2015, 88: 34-44. 10.1016/j.knosys.2015.08.009 |
17 | YIN C, ZHU Y, FEI J, et al. A deep learning approach for intrusion detection using recurrent neural networks[J]. IEEE Access, 2017, 5: 21954-21961. 10.1109/access.2017.2762418 |
18 | RHODE M, BURNAP P, JONES K. Early-stage malware prediction using recurrent neural networks[J]. Computers & Security, 2018, 77: 578- 594. 10.1016/j.cose.2018.05.010 |
19 | DORIGUZZI-CORIN R, MILLAR S, SCOTT-HAYWARD S, et al. Lucid: a practical,lightweight deep learning solution for DDoS attack detection[J]. IEEE Transactions on Network and Service Management, 2020, 17(2): 876-889. 10.1109/tnsm.2020.2971776 |
20 | BONTEMPS L, CAO V L, McDERMOTT J, et al. Collective anomaly detection based on long short-term memory recurrent neural network [C]// Proceedings of the 2016 Internet Conference on Future Data and Security Engineering. Cham: Springer, 2016: 141-152. 10.1007/978-3-319-48057-2_9 |
21 | KHAN R U, ZHANG X, KUMAR R, et al. Evaluating the performance of ResNet model based on image recognition [C]// Proceedings of the 2018 International Conference on Computing and Artificial Intelligence. New York: ACM, 2018: 86-90. 10.1145/3194452.3194461 |
22 | LIU Y, SHAO Z, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL]. (2021-12-10) [2023-05-01]. . |
23 | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717. 10.1109/cvpr46437.2021.01350 |
24 | HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks [EB/OL]. (2019-05-16) [2023-05-01]. . 10.1109/cvpr.2018.00745 |
25 | WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539. 10.1109/cvpr42600.2020.01155 |
26 | 王锁成, 陈世平. 一种基于残差网络改进的异常流量入侵检测模型[J]. 小型微型计算机系统, 2023, 44(12): 2757-2764. |
WANG S C, CHEN S P. Improved abnormal traffic intrusion detection model based on residual network[J]. Journal of Chinese Computer Systems, 2023, 44(12): 2757-2764. | |
27 | LeCUN Y, BOTTOU L, BENGIO Y, et al. Gradient based learning applied to document recognition[J]. Proceedings of IEEE, 1998, 86(11): 2278-2324. 10.1109/5.726791 |
28 | YAO Y, SU L, LU Z. DeepGFL: deep feature learning via graph for attack detection on flow-based network traffic [C]// Proceedings of the 2018 IEEE Military Communications Conference. Piscataway: IEEE, 2018: 579-584. 10.1109/milcom.2018.8599821 |
29 | 杭梦鑫, 陈伟, 张仁杰. 基于改进的一维卷积神经网络的异常流量检测[J]. 计算机应用, 2021, 41(2): 433-440. |
HANG M X, CHEN W, ZHANG R J. Abnormal flow detection based on improved one-dimensional convolutional neural network[J]. Journal of Computer Applications, 2021, 41(2): 433-440. | |
30 | 尹梓诺, 马海龙, 胡涛. 基于联合注意力机制和一维卷积神经网络双向长短期记忆网络模型的流量异常检测方法[J]. 电子与信息学报, 2023, 45(10): 3719-3728. |
YIN Z N, MA H L, HU T. A traffic anomaly detection method based on the joint model of attention mechanism and one-dimensional convolutional neural network-bidirectional long short term memory[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3719-3728. | |
31 | VERKERKEN M, D’HOOGE L, SUDYANA D, et al. A novel multi-stage approach for hierarchical intrusion detection[J]. IEEE Transactions on Network and Service Management, 2023, 20(3): 3915-3929. 10.1109/tnsm.2023.3259474 |
[1] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[2] | 李力铤, 华蓓, 贺若舟, 徐况. 基于解耦注意力机制的多变量时序预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2732-2738. |
[3] | 赵志强, 马培红, 黑新宏. 基于双重注意力机制的人群计数方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2886-2892. |
[4] | 薛凯鹏, 徐涛, 廖春节. 融合自监督和多层交叉注意力的多模态情感分析网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2387-2392. |
[5] | 汪雨晴, 朱广丽, 段文杰, 李书羽, 周若彤. 基于交互注意力机制的心理咨询文本情感分类模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2393-2399. |
[6] | 高鹏淇, 黄鹤鸣, 樊永红. 融合坐标与多头注意力机制的交互语音情感识别[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2400-2406. |
[7] | 李钟华, 白云起, 王雪津, 黄雷雷, 林初俊, 廖诗宇. 基于图像增强的低照度人脸检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2588-2594. |
[8] | 莫尚斌, 王文君, 董凌, 高盛祥, 余正涛. 基于多路信息聚合协同解码的单通道语音增强[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2611-2617. |
[9] | 刘丽, 侯海金, 王安红, 张涛. 基于多尺度注意力的生成式信息隐藏算法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2102-2109. |
[10] | 徐松, 张文博, 王一帆. 基于时空信息的轻量视频显著性目标检测网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2192-2199. |
[11] | 李大海, 王忠华, 王振东. 结合空间域和频域信息的双分支低光照图像增强网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2175-2182. |
[12] | 魏文亮, 王阳萍, 岳彪, 王安政, 张哲. 基于光照权重分配和注意力的红外与可见光图像融合深度学习模型[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2183-2191. |
[13] | 熊武, 曹从军, 宋雪芳, 邵云龙, 王旭升. 基于多尺度混合域注意力机制的笔迹鉴别方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2225-2232. |
[14] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. |
[15] | 毛典辉, 李学博, 刘峻岭, 张登辉, 颜文婧. 基于并行异构图和序列注意力机制的中文实体关系抽取模型[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2018-2025. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||