《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (5): 1348-1354.DOI: 10.11772/j.issn.1001-9081.2024020255
所属专题: 进化计算专题(2024年第5期“进化计算专题”导读,全文已上线)
收稿日期:
2024-03-12
修回日期:
2024-04-05
接受日期:
2024-04-07
发布日期:
2024-04-26
出版日期:
2024-05-10
通讯作者:
堵威
作者简介:
田茂江(2000—),男,山东淄博人,博士研究生,主要研究方向:进化计算、大规模优化基金资助:
Maojiang TIAN, Mingke CHEN, Wei DU(), Wenli DU
Received:
2024-03-12
Revised:
2024-04-05
Accepted:
2024-04-07
Online:
2024-04-26
Published:
2024-05-10
Contact:
Wei DU
About author:
TIAN Maojiang, born in 2000, Ph. D. candidate. His research interests include evolutionary computation, large-scale optimization.Supported by:
摘要:
大规模重叠问题在实际工程应用中普遍存在,重叠问题子组间的共享变量给大规模重叠问题的优化带来了很大困难。基于分解的协同进化(CC)算法在解决大规模重叠问题上表现良好。然而,一些针对重叠问题设计的新型CC框架依赖问题分解方法获得重叠问题结构,而目前针对大规模重叠问题设计的分解方法不能同时兼顾高效性和准确性。为此,提出一种两阶段差分分组(TSDG)方法,在实现精确分组的同时显著减少了计算资源消耗。在第一阶段,采用基于有限差分原理的分组方法高效地识别子组集和共享变量集;第二阶段则提出一种分组改善方法检查前一阶段得到的子组集和共享变量集的信息,改正不准确的分组结果,以提高分组的稳定性和准确性。利用两阶段的协同作用,TSDG实现了对大规模重叠问题高效准确的分解。实验结果表明,TSDG能够在消耗较少计算资源的同时准确地分解大规模重叠问题。在优化实验中,TSDG在大规模重叠问题上的表现也优于对比算法。
中图分类号:
田茂江, 陈鸣科, 堵威, 杜文莉. 面向大规模重叠问题的两阶段差分分组方法[J]. 计算机应用, 2024, 44(5): 1348-1354.
Maojiang TIAN, Mingke CHEN, Wei DU, Wenli DU. Two-stage differential grouping method for large-scale overlapping problems[J]. Journal of Computer Applications, 2024, 44(5): 1348-1354.
函数 | 类型 | 子组规模 | 基函数 |
---|---|---|---|
一致 | 100×5+50×5+25×10 | Schwefel | |
冲突 | 100×5+50×5+25×10 | ||
一致 | 50×20 | ||
冲突 | 50×20 | ||
一致 | 100×5+50×5+25×10 | Elliptic | |
冲突 | 100×5+50×5+25×10 | ||
一致 | 50×20 | ||
冲突 | 50×20 |
表1 大规模重叠基准问题
Tab. 1 Large-scale overlapping benchmark functions
函数 | 类型 | 子组规模 | 基函数 |
---|---|---|---|
一致 | 100×5+50×5+25×10 | Schwefel | |
冲突 | 100×5+50×5+25×10 | ||
一致 | 50×20 | ||
冲突 | 50×20 | ||
一致 | 100×5+50×5+25×10 | Elliptic | |
冲突 | 100×5+50×5+25×10 | ||
一致 | 50×20 | ||
冲突 | 50×20 |
函数 | TSDG | RDG3 | ORDG | CBCCO | ||||
---|---|---|---|---|---|---|---|---|
DA/% | FE | DA/% | FE | DA/% | FE | DA/% | FE | |
100 | 24 173 | 76.28 | 16 424 | 87.47 | 15 822 | 100 | 409 966 | |
100 | 23 876 | 76.32 | 16 437 | 83.17 | 15 815 | 100 | 409 966 | |
100 | 26 075 | 70.07 | 18 195 | 80.83 | 17 729 | 100 | 409 966 | |
100 | 25 853 | 70.48 | 18 295 | 71.50 | 17 691 | 100 | 409 966 | |
100 | 24 215 | 76.65 | 16 461 | 83.67 | 16 189 | 100 | 409 966 | |
100 | 24 056 | 76.18 | 16 325 | 83.92 | 15 822 | 100 | 409 966 | |
100 | 26 372 | 69.87 | 18 169 | 74.67 | 17 681 | 100 | 409 966 | |
100 | 26 063 | 69.68 | 18 128 | 75.83 | 18 178 | 100 | 409 966 |
表2 各算法对大规模重叠问题的分解结果
Tab. 2 Decomposition results of each algorithm on large-scale overlapping problems
函数 | TSDG | RDG3 | ORDG | CBCCO | ||||
---|---|---|---|---|---|---|---|---|
DA/% | FE | DA/% | FE | DA/% | FE | DA/% | FE | |
100 | 24 173 | 76.28 | 16 424 | 87.47 | 15 822 | 100 | 409 966 | |
100 | 23 876 | 76.32 | 16 437 | 83.17 | 15 815 | 100 | 409 966 | |
100 | 26 075 | 70.07 | 18 195 | 80.83 | 17 729 | 100 | 409 966 | |
100 | 25 853 | 70.48 | 18 295 | 71.50 | 17 691 | 100 | 409 966 | |
100 | 24 215 | 76.65 | 16 461 | 83.67 | 16 189 | 100 | 409 966 | |
100 | 24 056 | 76.18 | 16 325 | 83.92 | 15 822 | 100 | 409 966 | |
100 | 26 372 | 69.87 | 18 169 | 74.67 | 17 681 | 100 | 409 966 | |
100 | 26 063 | 69.68 | 18 128 | 75.83 | 18 178 | 100 | 409 966 |
函数 | 对比项 | CSO | GL-SHADE | MLSHADE-SPA | DCC | RDG3 | ORDG | CBCCO | TSDG |
---|---|---|---|---|---|---|---|---|---|
Mean | 7.50E+08(+) | 9.12E+04(+) | 1.27E+08(+) | 7.00E+07(+) | 9.01E+03(+) | 2.17E+04(+) | 6.10E+01(+) | 2.35E+00 | |
Std. | 3.28E+08 | 4.54E+04 | 1.15E+08 | 1.27E+08 | 3.52E+03 | 2.68E+04 | 6.61E+01 | 6.45E+00 | |
Mean | 4.86E+09(+) | 4.86E+06(+) | 1.41E+07(+) | 7.71E+08(+) | 5.64E+06(+) | 5.14E+06(+) | 4.42E+06(+) | 4.40E+06 | |
Std. | 4.96E+09 | 1.57E+05 | 1.86E+06 | 3.70E+09 | 5.82E+05 | 4.99E+05 | 4.33E+04 | 4.41E+04 | |
Mean | 6.40E+08(+) | 1.53E+04(+) | 1.42E+07(+) | 2.24E+07(+) | 5.97E+04(+) | 1.33E+00(+) | 4.93E-08(+) | 2.20E-10 | |
Std. | 2.30E+08 | 1.23E+04 | 1.84E+07 | 3.33E+07 | 3.73E+04 | 3.72E+00 | 1.48E-07 | 5.37E-10 | |
Mean | 7.58E+09(+) | 4.29E+06(+) | 6.26E+07(+) | 8.66E+08(+) | 5.85E+06(+) | 5.13E+06(+) | 4.08E+06(=) | 4.07E+06 | |
Std. | 3.63E+09 | 1.22E+05 | 6.71E+07 | 2.54E+09 | 4.79E+05 | 1.40E+06 | 8.60E+04 | 5.58E+04 | |
Mean | 3.25E+11(+) | 7.34E+09(+) | 5.22E+10(+) | 8.16E+10(+) | 5.12E+07(+) | 5.04E+08(+) | 8.10E+06(+) | 2.72E+06 | |
Std. | 2.61E+10 | 2.57E+09 | 9.62E+09 | 1.95E+10 | 1.66E+07 | 9.36E+07 | 3.36E+06 | 1.32E+06 | |
Mean | 3.10E+12(+) | 6.09E+10(+) | 1.00E+12(+) | 1.03E+02(+) | 2.53E+10(+) | 2.22E+09(+) | 8.15E+08(+) | 8.12E+08 | |
Std. | 4.00E+11 | 3.07E+10 | 1.81E+11 | 3.51E+11 | 1.39E+10 | 1.60E+09 | 3.37E+06 | 2.59E+06 | |
Mean | 6.91E+11(+) | 1.27E+10(+) | 1.97E+11(+) | 2.56E+11(+) | 1.43E+08(+) | 7.54E+08(+) | 7.22E+04(+) | 3.91E+04 | |
Std. | 6.66E+11 | 2.75E+09 | 3.25E+10 | 5.66E+11120 | 6.81E+07 | 1.50E+09 | 3.95E+04 | 1.74E+04 | |
Mean | 1.06E+13(+) | 1.61E+11(+) | 2.26E+12(+) | 3.00E+12(+) | 2.20E+11(+) | 6.62E+10(+) | 2.35E+08(=) | 2.35E+08 | |
Std. | 1.17E+12 | 6.51E+10 | 2.31E+11 | 1.15E+12 | 7.58E+10 | 7.47E+10 | 4.63E+06 | 4.30E+06 | |
对比结果(胜/平/负) | 8/0/0 | 8/0/0 | 8/0/0 | 8/0/0 | 8/0/0 | 8/0/0 | 6/0/2 |
表3 TSDG及对比算法的优化结果
Tab. 3 Optimization results of TSDG and comparison algorithms
函数 | 对比项 | CSO | GL-SHADE | MLSHADE-SPA | DCC | RDG3 | ORDG | CBCCO | TSDG |
---|---|---|---|---|---|---|---|---|---|
Mean | 7.50E+08(+) | 9.12E+04(+) | 1.27E+08(+) | 7.00E+07(+) | 9.01E+03(+) | 2.17E+04(+) | 6.10E+01(+) | 2.35E+00 | |
Std. | 3.28E+08 | 4.54E+04 | 1.15E+08 | 1.27E+08 | 3.52E+03 | 2.68E+04 | 6.61E+01 | 6.45E+00 | |
Mean | 4.86E+09(+) | 4.86E+06(+) | 1.41E+07(+) | 7.71E+08(+) | 5.64E+06(+) | 5.14E+06(+) | 4.42E+06(+) | 4.40E+06 | |
Std. | 4.96E+09 | 1.57E+05 | 1.86E+06 | 3.70E+09 | 5.82E+05 | 4.99E+05 | 4.33E+04 | 4.41E+04 | |
Mean | 6.40E+08(+) | 1.53E+04(+) | 1.42E+07(+) | 2.24E+07(+) | 5.97E+04(+) | 1.33E+00(+) | 4.93E-08(+) | 2.20E-10 | |
Std. | 2.30E+08 | 1.23E+04 | 1.84E+07 | 3.33E+07 | 3.73E+04 | 3.72E+00 | 1.48E-07 | 5.37E-10 | |
Mean | 7.58E+09(+) | 4.29E+06(+) | 6.26E+07(+) | 8.66E+08(+) | 5.85E+06(+) | 5.13E+06(+) | 4.08E+06(=) | 4.07E+06 | |
Std. | 3.63E+09 | 1.22E+05 | 6.71E+07 | 2.54E+09 | 4.79E+05 | 1.40E+06 | 8.60E+04 | 5.58E+04 | |
Mean | 3.25E+11(+) | 7.34E+09(+) | 5.22E+10(+) | 8.16E+10(+) | 5.12E+07(+) | 5.04E+08(+) | 8.10E+06(+) | 2.72E+06 | |
Std. | 2.61E+10 | 2.57E+09 | 9.62E+09 | 1.95E+10 | 1.66E+07 | 9.36E+07 | 3.36E+06 | 1.32E+06 | |
Mean | 3.10E+12(+) | 6.09E+10(+) | 1.00E+12(+) | 1.03E+02(+) | 2.53E+10(+) | 2.22E+09(+) | 8.15E+08(+) | 8.12E+08 | |
Std. | 4.00E+11 | 3.07E+10 | 1.81E+11 | 3.51E+11 | 1.39E+10 | 1.60E+09 | 3.37E+06 | 2.59E+06 | |
Mean | 6.91E+11(+) | 1.27E+10(+) | 1.97E+11(+) | 2.56E+11(+) | 1.43E+08(+) | 7.54E+08(+) | 7.22E+04(+) | 3.91E+04 | |
Std. | 6.66E+11 | 2.75E+09 | 3.25E+10 | 5.66E+11120 | 6.81E+07 | 1.50E+09 | 3.95E+04 | 1.74E+04 | |
Mean | 1.06E+13(+) | 1.61E+11(+) | 2.26E+12(+) | 3.00E+12(+) | 2.20E+11(+) | 6.62E+10(+) | 2.35E+08(=) | 2.35E+08 | |
Std. | 1.17E+12 | 6.51E+10 | 2.31E+11 | 1.15E+12 | 7.58E+10 | 7.47E+10 | 4.63E+06 | 4.30E+06 | |
对比结果(胜/平/负) | 8/0/0 | 8/0/0 | 8/0/0 | 8/0/0 | 8/0/0 | 8/0/0 | 6/0/2 |
1 | 梁静,刘睿,瞿博阳,等.进化算法在大规模优化问题中的应用综述[J].郑州大学学报(工学版),2018,39(3):15-21. 10.13705/j.issn.1671-6833.2017.06.016 |
LIANG J, LIU R, QU B Y, et al. A survey of evolutionary algorithms for large scale optimization problem[J]. Journal of Zhengzhou University (Engineering Science), 2018,39(3):15-21. 10.13705/j.issn.1671-6833.2017.06.016 | |
2 | LI X, TANG K, OMIDVAR M N, et al. Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization[J]. Gene, 2013, 7(33): 8. |
3 | 黄志鹏,李兴权,朱文兴.超大规模集成电路布局的优化模型与算法[J].运筹学学报,2021,25(3):15-36. |
HUANG Z P, LI X Q, ZHU W X. Optimization models and algorithms for placement of very large scale integrated circuits[J]. Operations Research Transactions, 2021, 25(3): 15-36. | |
4 | 王伟权,丁鼎,曹淑艳.混合变邻域搜索算法求解大规模电动车辆路径优化问题[J].系统仿真学报, 2022, 34(4):910-919. 10.16182/j.issn1004731x.joss.21-1133 |
WANG W Q, DING D, CAO S Y. Hybrid variable neighborhood search algorithm for the multi-trip and heterogeneous-fleet electric vehicle routing problem[J]. Journal of System Simulation, 2022, 34(4):910-919. 10.16182/j.issn1004731x.joss.21-1133 | |
5 | VILLAGRA A, PANDOLFI D, LEGUIZAMÓN G, et al. Optimization of potable water networks with hybrid metaheuristics[C]// Proceedings of the 2017 XVII Workshop on Information Processing and Control. Piscataway: IEEE, 2017: 1-6. 10.23919/rpic.2017.8211619 |
6 | CHENG R, JIN Y. A competitive swarm optimizer for large scale optimization[J]. IEEE Transactions on Cybernetics, 2014, 45(2): 191-204. 10.1109/tcyb.2014.2322602 |
7 | WANG Z J, JIAN J R, ZHAN Z H, et al. Gene targeting differential evolution: a simple and efficient method for large scale optimization[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(4): 964-979. 10.1109/tevc.2022.3185665 |
8 | HE X, ZHENG Z, ZHOU Y. MMES: mixture model-based evolution strategy for large-scale optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 25(2): 320-333. 10.1109/tevc.2020.3034769 |
9 | JIA Y H, MEI Y, ZHANG M. Contribution-based cooperative co‑evolution for nonseparable large-scale problems with overlapping subcomponents[J]. IEEE Transactions on Cybernetics, 2020, 52(6): 4246-4259. 10.1109/TCYB.2020.3025577 |
10 | SUN Y, LI X, ERNST A, et al. Decomposition for large-scale optimization problems with overlapping components[C]// Proceedings of the 2019 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2019: 326-333. 10.1109/cec.2019.8790204 |
11 | POTTER M A, DE JONG K A. A cooperative coevolutionary approach to function optimization[C]// Proceedings of the 1994 International Conference on Parallel Problem Solving from Nature. Berlin: Springer, 1994: 249-257. 10.1007/3-540-58484-6_269 |
12 | OMIDVAR M N, LI X, YAO X. Smart use of computational resources based on contribution for cooperative co-evolutionary algorithms[C]// Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2011: 1115-1122. 10.1145/2001576.2001727 |
13 | JIA Y H, CHEN W N, GU T, et al. Distributed cooperative co-evolution with adaptive computing resource allocation for large scale optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(2): 188-202. 10.1109/tevc.2018.2817889 |
14 | SHI Y-J, TENG H-F, LI Z-Q. Cooperative co-evolutionary differential evolution for function optimization[C]// Proceedings of the 2006 International Conference on Natural Computation, LNTCS 3611. Berlin: Springer, 2005: 1080-1088. |
15 | YANG Z, TANG K, YAO X. Large scale evolutionary optimization using cooperative coevolution[J]. Information Sciences, 2008, 178(15): 2985-2999. 10.1016/j.ins.2008.02.017 |
16 | OMIDVAR M N, LI X, MEI Y, et al. Cooperative co-evolution with differential grouping for large scale optimization[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(3): 378-393. 10.1109/tevc.2013.2281543 |
17 | CHEN W, WEISE T, YANG Z, et al. Large-scale global optimization using cooperative coevolution with variable interaction learning[C]// Proceedings of the 2010 International Conference on Parallel Problem Solving from Nature, LNTCS 6239. Berlin: Springer, 2010: 300-309. |
18 | CHEN M, DU W, TANG Y, et al. A decomposition method for both additively and non-additively separable problems[J]. IEEE Transactions on Evolutionary Computation, 2022, 27(6): 1720-1734. 10.1109/tevc.2022.3218375 |
19 | IRAWAN D, NAUJOKS B, EMMERICH M. Cooperative-coevolution-CMA-ES with two-stage grouping[C]// Proceedings of the 2020 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2020: 1-8. 10.1109/cec48606.2020.9185616 |
20 | LIU H, WANG Y, FAN N. A hybrid deep grouping algorithm for large scale global optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(6): 1112-1124. 10.1109/tevc.2020.2985672 |
21 | BLANCHARD J, BEAUTHIER C, CARLETTI T. Investigating overlapped strategies to solve overlapping problems in a cooperative co-evolutionary framework[C]// Proceedings of the 2021 International Conference on Optimization and Learning. Cham: Springer, 2021: 254-266. 10.1007/978-3-030-85672-4_19 |
22 | OMIDVAR M N, YANG M, MEI Y, et al. DG2: a faster and more accurate differential grouping for large-scale black-box optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(6): 929-942. 10.1109/tevc.2017.2694221 |
23 | ZHANG X Y, GONG Y J, LIN Y, et al. Dynamic cooperative coevolution for large scale optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(6): 935-948. 10.1109/tevc.2019.2895860 |
24 | SUN Y, OMIDVAR M N, KIRLEY M, et al. Adaptive threshold parameter estimation with recursive differential grouping for problem decomposition[C]// Proceedings of the 2018 Genetic and Evolutionary Computation Conference. New York: ACM, 2018: 889-896. 10.1145/3205455.3205483 |
25 | JIA Y-H, ZHOU Y-R, LIN Y, et al. A distributed cooperative co-evolutionary CMA evolution strategy for global optimization of large-scale overlapping problems[J]. IEEE Access, 2019, 7: 19821-19834. 10.1109/access.2019.2897282 |
26 | TANG K, LI X, SUGANTHAN P N, et al. Benchmark functions for the CEC’2010 special session and competition on large-scale global optimization[R/OL]. Hefei: University of Science and Technology of China. School of Computer Science and Technology. Nature Inspired Computation and Applications Laboratory, 2007, 24: 1-18 [2024-01-13]. . |
27 | OMIDVAR M N, LI X, TANG K. Designing benchmark problems for large-scale continuous optimization[J]. Information Sciences, 2015, 316: 419-436. 10.1016/j.ins.2014.12.062 |
28 | PACHECO-DEL-MORAL O, COELLO COELLO C A. A shade-based algorithm for large scale global optimization[C]// Proceedings of the 2020 International Conference on Parallel Problem Solving from Nature. Cham: Springer, 2020: 650-663. 10.1007/978-3-030-58112-1_45 |
29 | HADI A A, MOHAMED A W, JAMBI K M. LSHADE-SPA memetic framework for solving large-scale optimization problems[J]. Complex & Intelligent Systems, 2019, 5(1): 25-40. 10.1007/s40747-018-0086-8 |
30 | HANSEN N. The CMA evolution strategy: a tutorial[EB/OL]. [2023-11-10]. . |
[1] | 赵楷文, 王鹏, 童向荣. 基于双阶段搜索的约束进化多任务优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1415-1422. |
[2] | 魏凤凤, 陈伟能. 分布式数据驱动的多约束进化优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1393-1400. |
[3] | 田野, 陈津津, 张兴义. 面向约束多目标优化的进化计算与梯度下降联合优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1386-1392. |
[4] | 张莞婷, 杜文莉, 堵威. 基于多时间尺度协同的大规模原油调度进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1355-1363. |
[5] | 赵佳伟, 陈雪峰, 冯亮, 候亚庆, 朱泽轩, Yew‑Soon Ong. 优化场景视角下的进化多任务优化综述[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1325-1337. |
[6] | 黄亚伟, 钱雪忠, 宋威. 基于双档案种群大小自适应方法的改进差分进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3844-3853. |
[7] | 黄杰, 武瑞梓, 李均利. 高效的自适应复杂网络鲁棒性优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3530-3539. |
[8] | 郭茂祖, 张雅喆, 赵玲玲. 基于空间语义和个体活动的电动汽车充电站选址方法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2819-2827. |
[9] | 徐赛娟, 裴镇宇, 林佳炜, 刘耿耿. 基于多阶段搜索的约束多目标进化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2345-2351. |
[10] | 李二超, 程艳丽. 基于权重向量聚类的动态多目标进化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2226-2236. |
[11] | 高智慧, 韩萌, 刘淑娟, 李昂, 穆栋梁. 基于智能优化算法的高效用项集挖掘方法综述[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1676-1686. |
[12] | 王彬, 向甜, 吕艺东, 王晓帆. 基于NSGA‑Ⅱ的自适应多尺度特征通道分组优化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1401-1408. |
[13] | 高乾顺, 范纯龙, 李炎达, 滕一平. 基于差分进化的神经网络通用扰动生成方法[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3436-3442. |
[14] | 李二超, 张生辉. 基于新评价指标自适应预测的动态多目标优化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(10): 3178-3187. |
[15] | 陈揆能, 袁小芳. 多目标混合进化算法求解加工时间可控的开放车间调度问题[J]. 《计算机应用》唯一官方网站, 2022, 42(8): 2617-2627. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||