| 1 | HAMILTON W L, YING R, LESKOVEC J. Representation learning on graphs: methods and applications[J]. IEEE Data Engineering Bulletin, 2017, 40: 52-74. | 
																													
																						| 2 | HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1025-1035.  10.7551/mitpress/11474.003.0014 | 
																													
																						| 3 | BACKSTROM L, LESKOVEC J. Supervised random walks: predicting and recommending links in social networks[C]// Proceedings of the 4th ACM International Conference on Web Search and Data Mining. New York: ACM, 2011: 635-644.  10.1145/1935826.1935914 | 
																													
																						| 4 | COLEMAN J S. Foundations of Social Theory[M]. Cambridge: Harvard University Press, 1990. | 
																													
																						| 5 | JEON H, KIM S-R, NAM D, et al. Analysis of triangular motifs in protein interaction networks and their implications to protein ages and cancer genes[J]. International Journal of Data Mining and Bioinformatics, 2018, 19(4): 340-365.  10.1504/ijdmb.2017.091365 | 
																													
																						| 6 | ROTABI R, KAMATH K, KLEINBERG J, et al. Detecting strong ties using network motifs[C]// Proceedings of the 26th International Conference on World Wide Web Conference. New York: ACM, 2017: 983-992.  10.1145/3041021.3055139 | 
																													
																						| 7 | MILO R, SHEN-ORR S, ITZKOVITZ S, et al. Network motifs: simple building blocks of complex networks[J]. Science, 2002, 298(5594): 824-827.  10.1126/science.298.5594.824 | 
																													
																						| 8 | KIPF T N, WELLING M. Semi-supervised classifition with graph convolutional networks[C]// Proceedings of the 5th International Conference on Learning Representations. London: dblp Computer Science Bibliography, 2017: 1-14. | 
																													
																						| 9 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C/OL]// Proceedings of the 6th International Conference on Learning Representations. [S.l.]: ICLR, 2018 [2023-05-01]. . | 
																													
																						| 10 | DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 3844-3852. | 
																													
																						| 11 | XU K, LI C, TIAN Y, et al. Representation learning on graphs with jumping knowledge networks[C]// Proceedings of the 35th International Conference on Machine Learning. New York: PMLR, 2018, 80: 5453-5462. | 
																													
																						| 12 | KIPF T N, WELLING M. Variational graph auto encoders[C/OL]// Proceedings of the 2016 Bayesian Deep Learning Workshop. [S.l.]: NeurIPS, 2016 [2023-05-01]. .  10.48550/arXiv.1611.07308 | 
																													
																						| 13 | ZHANG J, SHI X, XIE J, et al. GaAN: gated attention networks for learning on large and spatiotemporal graphs[C]// Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence. [S.l.]: Association for Uncertainty in Artificial Intelligence, 2018: 339-349. | 
																													
																						| 14 | CHEN J, MA T, XIAO C. FastGCN: fast learning with graph convolutional networks via importance sampling[C/OL]// Proceedings of the 6th International Conference on Learning Representations. [S.l.]: ICLR, 2018 [2018-01-30]. . | 
																													
																						| 15 | YING R, HE R, CHEN K, et al. Graph convolutional neural networks for web-scale recommender systems[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 974-983.  10.1145/3219819.3219890 | 
																													
																						| 16 | BENSON A R, GLEICH D F, LESKOVEC J. Higher order organization of complex networks[J]. Science, 2016, 353(6295): 163-166.  10.1126/science.aad9029 | 
																													
																						| 17 | ROSSI R A, AHMED N K, KOH E. Higher-order network representation learning[C]// Proceedings of the 27th International Conference on World Wide Web Conference. Republic and Canton of Geneva, CHE: International World Wide Web Conferences Steering Committee, 2018: 3-4.  10.1145/3184558.3186900 | 
																													
																						| 18 | ZHAO H, XU X, SONG Y, et al. Ranking users in social networks with higher-order structures[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 232-239.  10.1609/aaai.v32i1.11287 | 
																													
																						| 19 | MONTI F, OTNESS K, BRONSTEIN M. MotifNet: a motif-based graph convolutional network for directed graphs[C]// Proceedings of the 2018 IEEE Data Science Workshop. Piscataway: IEEE, 2018: 225-228.  10.1109/dsw.2018.8439897 | 
																													
																						| 20 | YU Y, LU Z, LIU J, et al. RUM: network representation learning using motifs[C]// Proceedings of the 2019 IEEE 35th International Conference on Data Engineering. Piscataway: IEEE, 2019: 1382-1393.  10.1109/icde.2019.00125 | 
																													
																						| 21 | WANG L, REN J, XU B, et al. MODEL: motif-based deep feature learning for link prediction[J]. IEEE Transactions on Computational Social Systems, 2020, 7(2): 503-516.  10.1109/tcss.2019.2962819 | 
																													
																						| 22 | 邱小波.关于2-连通图可迹性的两个充分条件[D]. 武汉:华中师范大学,2022. | 
																													
																						|  | QIU X B. Two sufficient conditions for a 2‑connected graphs to be traceable[D]. Wuhan: Central China Normal University, 2022. | 
																													
																						| 23 | RIBEIRO P, SILVA F. G-tries: an efficient data structure for discovering network motifs[C]// Proceedings of the 2010 ACM Symposium on Applied Computing. New York: ACM, 2010: 1559-1566.  10.1145/1774088.1774422 |