| 1 | WU L, SUN P J, FU Y J, et al. A neural influence diffusion model for social recommendation[C]// Proceedings of the 42nd International Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 235-244. 10.1145/3331184.3331214 | 
																													
																						| 2 | FAN W Q, MA Y, LI Q, et al. Graph neural networks for social recommendation[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 417-426. 10.1145/3308558.3313488 | 
																													
																						| 3 | WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 3307-3313. 10.1145/3308558.3313417 | 
																													
																						| 4 | JIN W G, COLEY C W, BARZILAY R, et al. Predicting organic reaction outcomes with Weisfeiler-Lehman network[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 2607-2616. | 
																													
																						| 5 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2021-01-20]. . | 
																													
																						| 6 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018-02-04) [2021-02-10].. | 
																													
																						| 7 | 涂存超,杨成,刘知远,等. 网络表示学习综述[J]. 中国科学:信息科学, 2017, 47(8): 980-996. 10.1360/n112017-00145 | 
																													
																						|  | TU C C, YANG C, LIU Z Y, et al. Network representation learning: an overview[J]. SCIENTIA SINICA Informationis, 2017, 47(8): 980-996. 10.1360/n112017-00145 | 
																													
																						| 8 | LI Q M, HAN Z C, WU X M. Deeper insights into graph convolutional networks for semi-supervised learning[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 3538-3545. | 
																													
																						| 9 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 | 
																													
																						| 10 | PAGE L, BRIN S, MOTWANI R, et al. The PageRank citation ranking: bring order to the Web[R]. Stanford: Stanford InfoLab, 1999. | 
																													
																						| 11 | KLICPERA J, BOJCHEVSKI A, GÜNNEMANN S. Predict then propagate: graph neural networks meet personalized PageRank[EB/OL]. (2019-02-27) [2021-02-20].. 10.1145/3394486.3403296 | 
																													
																						| 12 | CHIANG W L, LIU X Q, SI S, et al. Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 257-266. 10.1145/3292500.3330925 | 
																													
																						| 13 | CHEN M, WEI Z W, HUANG Z F, et al. Simple and deep graph convolutional networks[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 1725-1735. | 
																													
																						| 14 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 448-456. | 
																													
																						| 15 | ZHAO L X, AKOGLU L. PairNorm: tackling over-smoothing in GNNs[EB/OL]. (2020-02-13) [2021-02-25].. | 
																													
																						| 16 | RONG Y, HUANG W B, XU T Y, et al. DropEdge: towards deep graph convolutional networks on node classification[EB/OL]. (2020-03-12) [2021-03-05]. . 10.1007/978-3-030-75765-6_6 | 
																													
																						| 17 | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15: 1929-1958. | 
																													
																						| 18 | FENG W Z, ZHANG J, DONG Y X, et al. Graph random neural networks for semi-supervised learning on graphs[C/OL]// Proceedings of the 34th International Conference on Neural Information Processing Systems. (2020-10-26) [2021-03-05].. | 
																													
																						| 19 | LIU M, GAO H Y, JI S W. Towards deeper graph neural networks[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 338-348. 10.1145/3394486.3403076 | 
																													
																						| 20 | WU F, ZHANG T Y, DE SOUZA A H, et al. Simplifying graph convolutional networks[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 6861-6871. | 
																													
																						| 21 | 张璞,柴变芳,张静,等. 半监督属性网络表示学习方法[J]. 计算机工程与应用, 2019, 55(12): 117-123, 144. 10.3778/j.issn.1002-8331.1812-0079 | 
																													
																						|  | ZHANG P, CHAI B F, ZHANG J, et al. Semi-supervised representation learning method for attributed networks[J]. Computer Engineering and Applications, 2019, 55(12): 117-123, 144. 10.3778/j.issn.1002-8331.1812-0079 | 
																													
																						| 22 | YANG Z L, COHEN W, SALAKHUTDINOV R. Revisiting semi-supervised learning with graph embeddings[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 40-48. | 
																													
																						| 23 | DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 3844-3852. |