1 |
KALAMARAS I, ZAMICHOS A, SALAMANIS A, et al. An interactive visual analytics platform for smart intelligent transportation systems management [J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 487-496.
|
2 |
GASTEIGER J, WEIβENBERGER S, GÜNNEMANN S. Diffusion improves graph learning [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 133666-13378.
|
3 |
ZHANG S, SONG Y, JIANG D, et al. Noise-identified Kalman filter for short-term traffic flow forecasting [C]// Proceedings of the 2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks. Piscataway: IEEE, 2019: 462-466.
|
4 |
YE Q, SZETO W Y, WONG S C. Short-term traffic speed forecasting based on data recorded at irregular intervals [J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4): 1727-1737.
|
5 |
CHANG H, LEE Y, YOON B, et al. Dynamic near-term traffic flow prediction: system-oriented approach based on past experiences [J]. IET Intelligent Transport Systems, 2012, 6(3): 292-305.
|
6 |
HU W, YAN L, LIU K, et al. A short-term traffic flow forecasting method based on the hybrid PSO-SVR [J]. Neural Processing Letters, 2016, 43(1): 155-172.
|
7 |
ZOU Z, PENG H, LIU L, et al. Deep convolutional mesh RNN for urban traffic passenger flows prediction [C]// Proceedings of the 2018 IEEE Smart World, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation. Piscataway: IEEE, 2018: 1305-1310.
|
8 |
MA X, TAO Z, WANG Y, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data [J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197.
|
9 |
FU R, ZHANG Z, LI L. Using LSTM and GRU neural network methods for traffic flow prediction [C]// Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation. Piscataway: IEEE, 2016: 324-328.
|
10 |
YUAN H, LI G. A survey of traffic prediction: from spatio-temporal data to intelligent transportation [J]. Data Science and Engineering, 2021, 6(1): 63-85.
|
11 |
罗文慧,董宝田,王泽胜.基于CNN-SVR混合深度学习模型的短时交通流预测[J].交通运输系统工程与信息,2017,17(5):68-74.
|
|
LUO W H, DONG B T, WANG Z S. Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model [J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(5): 68-74.
|
12 |
MA D, SHENG B, JIN S, et al. Short-term traffic flow forecasting by selecting appropriate predictions based on pattern matching [J]. IEEE Access, 2018, 6: 75629-75638.
|
13 |
YU B, LEE Y, SOHN K. Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a Graph Convolutional Neural network (GCN) [J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 189-204.
|
14 |
冯宁,郭晟楠,宋超,等.面向交通流量预测的多组件时空图卷积网络[J].软件学报,2019,30(3):759-769.
|
|
FENG N, GUO S N, SONG C, et al. Multi-component spatial-temporal graph convolution networks for traffic flow forecasting [J]. Journal of Software, 2019, 30(3): 759-769.
|
15 |
张永凯,武志昊,林友芳,等.面向交通流量预测的时空超关系图卷积网络[J].计算机应用,2021,41(12):3578-3584.
|
|
ZHANG Y K, WU Z H, LIN Y F, et al. Spatio-temporal hyper-relationship graph convolutional network for traffic flow forecasting [J]. Journal of Computer Applications, 2021, 41(12): 3578-3584.
|
16 |
CAO Y, LIU D, YIN Q, et al. MSASGCN: multi-head self-attention spatiotemporal graph convolutional network for traffic flow forecasting [J]. Journal of Advanced Transportation, 2022, 2022: 2811961.
|
17 |
KHALED A, ELSIR A M T, SHEN Y. TFGAN: traffic forecasting using generative adversarial network with multi-graph convolutional network [J]. Knowledge-Based Systems, 2022, 249: 108990.
|
18 |
ZHANG D, KABUKA M R. Combining weather condition data to predict traffic flow: a GRU-based deep learning approach [J]. IET Intelligent Transport Systems, 2018, 12(7): 578-585.
|
19 |
ZHU J, WANG Q, TAO C. AST-GCN: attribute-augmented spatiotemporal graph convolutional network for traffic forecasting [J]. IEEE Access, 2021, 9: 35973-35983.
|
20 |
BORDES A, USUNIER A, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data [C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2013: 2787-2795.
|
21 |
CASTRO-NETO M, Y-S JEONG, M-K JEONG, et al. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions [J]. Expert Systems with Applications, 2009, 36(3): 6164-6173.
|
22 |
CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling [EB/OL]. (2014-12-11) [2023-08-14]. .
|
23 |
LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting [EB/OL]. [2023-08-01]. .
|
24 |
ZHAO L, SONG Y, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858.
|
25 |
BAI J, ZHU J, SONG Y, et al. A3T-GCN: attention temporal graph convolutional network for traffic forecasting [J]. ISPRS International Journal of Geo-Information, 2021, 10(7): 485.
|