| [1] |
PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2015 task 12: aspect based sentiment analysis[C]// Proceedings of the 9th International Workshop on Semantic Evaluation. Stroudsburg: ACL, 2015: 486-495.
|
| [2] |
WANG R, LIU C, ZHAO R, et al. Post-processing method with aspect term error correction for enhancing aspect term extraction[J]. Applied Intelligence, 2022, 52(14): 15751-15763.
|
| [3] |
WU Z, ZHAO F, DAI X Y, et al. Latent opinions transfer network for target-oriented opinion words extraction[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 9298-9305.
|
| [4] |
WANG K, SHEN W, YANG Y, et al. Relational graph attention network for aspect-based sentiment analysis[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3229-3238.
|
| [5] |
PENG H, XU L, BING L, et al. Knowing what, how and why: a near complete solution for aspect-based sentiment analysis[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 8600-8607.
|
| [6] |
CHEN S, WANG Y, LIU J, et al. Bidirectional machine reading comprehension for aspect sentiment triplet extraction[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 12666-12674.
|
| [7] |
MAO Y, SHEN Y, YU C, et al. A joint training dual-MRC framework for aspect based sentiment analysis[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 13543-13551.
|
| [8] |
WU Z, YING C, ZHAO F, et al. Grid tagging scheme for aspect-oriented fine-grained opinion extraction[C]// Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg: ACL, 2020: 2576-2585.
|
| [9] |
CHEN H, ZHAI Z, FENG F, et al. Enhanced multi-channel graph convolutional network for aspect sentiment triplet extraction[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 2974-2985.
|
| [10] |
SHI X, HU M, DENG J, et al. Integration of multi-branch GCNs enhancing aspect sentiment triplet extraction[J]. Applied Sciences, 2023, 13(7): 4345-4350.
|
| [11] |
LI Y, HE Q, ZHANG D. Dual graph convolutional networks integrating affective knowledge and position information for aspect sentiment triplet extraction[J]. Frontiers in Neurorobotics, 2023, 17: No.1193011.
|
| [12] |
XU L, CHIA Y K, BING L. Learning span-level interactions for aspect sentiment triplet extraction[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 4755-4766 .
|
| [13] |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186.
|
| [14] |
ZHANG C, LI Q, SONG D. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 4568-4578.
|
| [15] |
HUANG L, SUN X, LI S, et al. Syntax-aware graph attention network for aspect-level sentiment classification[C]// Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg: ACL, 2020: 799-810.
|
| [16] |
ZHOU T, SHEN Y, CHEN K, et al. Hierarchical dual graph convolutional network for aspect-based sentiment analysis[J]. Knowledge-Based Systems, 2023, 276: No.110740.
|
| [17] |
SUN K, ZHANG R, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 5679-5688.
|
| [18] |
CAMBRIA E, LIU Q, DECHERCHI S, et al. SenticNet 7: a commonsense-based neurosymbolic AI framework for explainable sentiment analysis[C]// Proceedings of the 13th Language Resources and Evaluation Conference. Stroudsburg: ACL, 2022: 3829-3839.
|
| [19] |
ZHANG Y, YANG Y, LI Y, et al. Boundary-driven table-filling for aspect sentiment triplet extraction[C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022: 6485-6498.
|
| [20] |
PENG H, XU L, BING L,et al. Knowing what, how and why: a near complete solution for aspect-based sentiment analysis [C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020:8600-8607.
|
| [21] |
XU L, LI H, LU W, et al. Position-aware tagging for aspect sentiment triplet extraction[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 2339-2349.
|
| [22] |
李言博,何庆,陆顺意. 融合语义和句法信息的方面情感三元组抽取[J]. 计算机应用, 2024, 44(10): 3275-3280.
|
|
LI Y B, HE Q, LU S Y. Aspect sentiment triplet extraction integrating semantic and syntactic information[J]. Journal of Computer Applications, 2024, 44(10): 3275-3280.
|
| [23] |
YUAN L, WANG J, YU L C, et al. Encoding syntactic information into Transformers for aspect-based sentiment triplet extraction[J]. IEEE Transactions on Affective Computing, 2024, 15(2): 722-735.
|
| [24] |
高龙涛,李娜娜. 基于方面感知注意力增强的方面情感三元组抽取[J]. 计算机应用, 2024, 44(4): 1049-1057.
|
|
GAO L T, LI N N. Aspect sentiment triplet extraction based on aspect-aware attention enhancement[J]. Journal of Computer Applications, 2024, 44(4): 1049-1057.
|
| [25] |
MUKHERJEE R, KANNEN N, PANDEY S K, et al. CONTRASTE: supervised contrastive pre-training with aspect-based prompts for aspect sentiment triplet extraction[C]// Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg: ACL, 2023: 12065-12080.
|
| [26] |
SUN X, QI J, ZHU Z, et al. SenticNet and abstract meaning representation driven attention-gate semantic framework for aspect sentiment triplet extraction[J]. Engineering Applications of Artificial Intelligence, 2025, 139(Pt B): No.109625.
|
| [27] |
XIA T, SUN X, YANG Y, et al. A dual relation-encoder network for aspect sentiment triplet extraction[J]. Neurocomputing, 2024, 597: No.128064.
|