| [1] |
李云汉,施运梅,李宁,等. 中文文本自动校对综述[J]. 中文信息学报, 2022, 36(9): 1-18, 27.
|
|
LI Y H, SHI Y M, LI N, et al. A survey of automatic error correction of Chinese text[J]. Journal of Chinese Information Processing, 2022, 36(9): 1-18, 27.
|
| [2] |
王天极,陈柏霖,黄瑞章,等. 基于Electra和门控双线性神经网络的中文语法错误检测模型[J]. 中文信息学报, 2023, 37(8): 169-178.
|
|
WANG T J, CHEN B L, HUANG R Z, et al. Chinese grammatical error diagnosis model based on Electra and gated-bilinear neural network[J]. Journal of Chinese Information Processing, 2023, 37(8): 169-178.
|
| [3] |
QIU Z, QU Y. A two-stage model for Chinese grammatical error correction[J]. IEEE Access, 2019, 7: 146772-146777.
|
| [4] |
WU H, ZHANG H, XUAN R, et al. Bi-DCSpell: a bi-directional detector-corrector interactive framework for Chinese spelling check[C]// Findings of the Association for Computational Linguistics: EMNLP 2024. Stroudsburg: ACL, 2024: 3974-3984.
|
| [5] |
HUANG H, YE J, ZHOU Q, et al. A frustratingly easy plug-and-play detection-and-reasoning module for Chinese spelling check[C]// Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg: ACL, 2023: 11514-11525.
|
| [6] |
LI Y, LIU X, WANG S, et al. TemplateGEC: improving grammatical error correction with detection template[C]// Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2023: 6878-6892.
|
| [7] |
LI W, WANG H. Detection-correction structure via general language model for grammatical error correction[C]// Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2024: 1748-1763.
|
| [8] |
HUANG W, DONG X, WANG M X, et al. CSEC: a Chinese semantic error correction dataset for written correction[C]// Proceedings of the 2023 International Conference on Neural Information Processing, LNCS 14451. Singapore: Springer, 2024: 383-398.
|
| [9] |
CHEN B, OUYANG Q, LUO Y, et al. S2GSL: incorporating segment to syntactic enhanced graph structure learning for aspect-based sentiment analysis[C]// Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2024: 13366-13379.
|
| [10] |
ZHANG M, LI Z, FU G, et al. Syntax-enhanced neural machine translation with syntax-aware word representations[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 1151-1161.
|
| [11] |
SUN B, WANG B, CHE W, et al. Improving pre-trained language models with syntactic dependency prediction task for Chinese semantic error recognition[EB/OL]. [2024-11-20]..
|
| [12] |
WAN Z, WAN X. A syntax-guided grammatical error correction model with dependency tree correction[EB/OL]. [2024-11-20]..
|
| [13] |
LI Z, PARNOW K, ZHAO H. Incorporating rich syntax information in grammatical error correction[J]. Information Processing and Management, 2022, 59(3): No.102891.
|
| [14] |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186.
|
| [15] |
XU L, WU J, PENG J, et al. FCGEC: fine-grained corpus for Chinese grammatical error correction[C]// Findings of the Association for Computational Linguistics: EMNLP 2022. Stroudsburg: ACL, 2022: 1900-1918.
|
| [16] |
MA S, LI Y, SUN R, et al. Linguistic rules-based corpus generation for native Chinese grammatical error correction[C]// Findings of the Association for Computational Linguistics: EMNLP 2022. Stroudsburg: ACL, 2022: 576-589.
|
| [17] |
YEH J F, CHANG L T, LIU C Y, et al. Chinese spelling check based on N-gram and string matching algorithm[C]// Proceedings of the 4th Workshop on Natural Language Processing Techniques for Educational Applications. Stroudsburg: ACL, 2017: 35-38.
|
| [18] |
YUAN Z, BRISCOE T. Grammatical error correction using neural machine translation[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2016: 380-386.
|
| [19] |
LIANG D, ZHENG C, GUO L, et al. BERT enhanced neural machine translation and sequence tagging model for Chinese grammatical error diagnosis[C]// Proceedings of the 6th Workshop on Natural Language Processing Techniques for Educational Applications. Stroudsburg: ACL, 2020: 57-66.
|
| [20] |
REN H, YANG L, XUN E. A sequence to sequence learning for Chinese grammatical error correction[C]// Proceedings of the 2018 CCF International Conference on Natural Language Processing and Chinese Computing, LNCS 11109. Cham: Springer, 2018: 401-410.
|
| [21] |
SUN B, WANG B, WANG Y, et al. CSED: a Chinese semantic error diagnosis corpus[EB/OL]. [2024-11-20]..
|
| [22] |
LI Y, HUANG H, MA S, et al. On the (in)effectiveness of large language models for Chinese text correction[EB/OL]. [2024-11-21]..
|
| [23] |
QU F, WU Y. Evaluating the capability of large-scale language models on Chinese grammatical error correction task[EB/OL]. [2024-11-21]..
|
| [24] |
WANG Y, WANG B, LIU Y, et al. LM-Combiner: a contextual rewriting model for Chinese grammatical error correction[C]// Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation. [S.l.]: ELRA and ICCL, 2024: 10675-10685.
|
| [25] |
YANG H, QUAN X. Alirector: alignment-enhanced Chinese grammatical error corrector[C]// Findings of the Association for Computational Linguistics: ACL 2024. Stroudsburg: ACL, 2024: 2531-2546.
|
| [26] |
PENG H, LI J, HE Y, et al. Large-scale hierarchical text classification with recursively regularized deep graph-CNN[C]// Proceedings of the 2018 World Wide Web Conference. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2018: 1063-1072.
|
| [27] |
YAO L, MAO C, LUO Y. Graph convolutional networks for text classification[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 7370-7377.
|
| [28] |
LUO Y, BAO Z, LI C, et al. Chinese grammatical error diagnosis with graph convolution network and multi-task learning[C]// Proceedings of the 6th Workshop on Natural Language Processing Techniques for Educational Applications. Stroudsburg: ACL, 2020: 44-48.
|
| [29] |
ZHANG Y, ZHANG B, LI Z, et al. SynGEC: syntax-enhanced grammatical error correction with a tailored GEC-oriented parser[C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022: 2518-2531.
|
| [30] |
WOLF T, DEBUT L, SANH V, et al. Transformers: state-of-the-art natural language processing[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Stroudsburg: ACL, 2020: 38-45.
|
| [31] |
CHE W, FENG Y, QIN L, et al. N-LTP: an open-source neural language technology platform for Chinese[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Stroudsburg: ACL, 2021: 42-49.
|
| [32] |
KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. [2024-11-22]..
|
| [33] |
WANG W, BI B, YAN M, et al. StructBERT: incorporating language structures into pre-training for deep language understanding[EB/OL]. [2024-11-22]..
|
| [34] |
ZHANG Y, LI Z, BAO Z, et al. MuCGEC: a multi-reference multi-source evaluation dataset for Chinese grammatical error correction[C]// Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 3118-3130.
|
| [35] |
BRYANT C, FELICE M, BRISCOE E. Automatic annotation and evaluation of error types for grammatical error correction[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2017: 793-805.
|
| [36] |
FELICE M, BRYANT C, BRISCOE T. Automatic extraction of learner errors in ESL sentences using linguistically enhanced alignments[C]// Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers. [S.l.]: the COLING 2016 Organizing Committee, 2016: 825-835.
|
| [37] |
CUI Y, CHE W, LIU T, et al. Revisiting pre-trained models for Chinese natural language processing[C]// Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg: ACL, 2020: 657-668.
|
| [38] |
MINAEE S, MIKOLOV T, NIKZAD N, et al. Large language models: a survey[EB/OL]. [2024-11-22]..
|
| [39] |
Team GLM. ChatGLM: a family of large language models from GLM-130B to GLM-4 all tools[EB/OL]. [2024-11-22]..
|
| [40] |
Team Qwen. Qwen technical report[R/OL]. [2024-11-22]..
|
| [41] |
SUN Y, WANG S, FENG S, et al. ERNIE 3.0: large-scale knowledge enhanced pre-training for language understanding and generation[EB/OL]. [2024-11-22]..
|
| [42] |
BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners advances[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 1877-1901.
|