《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (12): 4055-4063.DOI: 10.11772/j.issn.1001-9081.2024111670
陈晓娟, 张薇
收稿日期:2024-11-29
修回日期:2025-03-27
接受日期:2025-04-08
发布日期:2025-04-22
出版日期:2025-12-10
通讯作者:
张薇
作者简介:陈晓娟(2000—),女,山东泰安人,硕士研究生,CCF会员,主要研究方向:无人机物流配送、任务分配基金资助:Received:2024-11-29
Revised:2025-03-27
Accepted:2025-04-08
Online:2025-04-22
Published:2025-12-10
Contact:
Wei ZHANG
About author:CHEN Xiaojuan, born in 2000, M. S. candidate. Her research interests include UAV logistics delivery, task allocation.Supported by:摘要:
农村“最后一公里”配送难、时间长和成本高的特点使高效精准的末端配送调度方案尤为重要。针对农村配送场景下的多物流无人机(UAV)的任务分配问题,综合考虑UAV的载重量和UAV的最大飞行距离,以最小化UAV的飞行距离、派遣数量和不违反时间窗为目标,建立多目标的UAV任务分配模型。首先,以强化学习为基础,针对任务分配维数过高的问题,引入编码器和注意力机制有效简化状态空间;其次,结合全局-局部搜索策略,在探索解空间的同时避免陷入局部最优解,从而提高求解质量;最后,进一步分析参数权重设置,并且经实验得出各子目标函数权重系数的最优组合。仿真结果表明,在得到的最终路径长度上相较于混合Q学习网络方法(HQM)、自适应大邻域搜索算法(ALNS)、Q学习算法(Q-learning)和遗传算法(GA),所提算法SG-HQM(Sine and Gaussian HQM)分别减少了8.35%、9.88%、10.29%和12.48%。
中图分类号:
陈晓娟, 张薇. 基于强化学习的无人机乡村末端配送任务分配[J]. 计算机应用, 2025, 45(12): 4055-4063.
Xiaojuan CHEN, Wei ZHANG. Task allocation of unmanned aerial vehicle for rural last-mile delivery based on reinforcement learning[J]. Journal of Computer Applications, 2025, 45(12): 4055-4063.
| 参数含义 | 参数 | 值 |
|---|---|---|
| 最大容量 | Q | 5 kg |
| 飞行速度 | v | 10 m/s |
| 最远飞行距离 | D | 10 km |
| UAV数 | M | 10 |
表1 UAV参数
Tab.1 UAV parameters
| 参数含义 | 参数 | 值 |
|---|---|---|
| 最大容量 | Q | 5 kg |
| 飞行速度 | v | 10 m/s |
| 最远飞行距离 | D | 10 km |
| UAV数 | M | 10 |
| 客户ID | 时间窗 | 坐标点/km | 需货量/kg |
|---|---|---|---|
| 1 | [13:20, 14:05] | [0.99, 3.80] | 2.1 |
| 2 | [13:40, 15:02] | [4.06, 3.06] | 1.2 |
| 3 | [14:30, 15:55] | [0.45, 1.50] | 1.3 |
| 4 | [17:50, 19:13] | [3.60, 1.45] | 2.1 |
| 5 | [17:10, 17:46] | [3.42, 4.76] | 1.2 |
| 6 | [16:40, 17:59] | [2.49, 1.12] | 1.7 |
| 7 | [14:30, 15:51] | [0.23, 3.13] | 1.2 |
| 8 | [15:20, 16:28] | [3.08, 2.56] | 2.3 |
| 9 | [13:00, 13:52] | [3.85, 0.10] | 3.0 |
| 10 | [13:20, 14:20] | [3.16, 3.74] | 1.3 |
| 11 | [14:00, 14:59] | [0.84, 0.44] | 2.6 |
| 12 | [15:40, 16:10] | [1.86, 3.36] | 2.2 |
| 13 | [17:00, 18:04] | [2.21, 2.17] | 1.5 |
| 14 | [12:10, 13:36] | [4.58, 3.57] | 3.8 |
| 15 | [16:10, 16:54] | [4.54, 1.59] | 1.1 |
| 16 | [16:10, 17:30] | [0.56, 4.14] | 2.7 |
| 17 | [17:20, 18:00] | [3.25, 3.00] | 2.4 |
| 18 | [9:30, 10:36] | [0.01, 2.56] | 2.8 |
| 19 | [14:30, 15:44] | [2.71, 0.71] | 1.7 |
| 20 | [13:50, 15:15] | [4.02, 2.60] | 0.6 |
表2 物流配送点任务参数
Tab.2 Logistics delivery point task parameters
| 客户ID | 时间窗 | 坐标点/km | 需货量/kg |
|---|---|---|---|
| 1 | [13:20, 14:05] | [0.99, 3.80] | 2.1 |
| 2 | [13:40, 15:02] | [4.06, 3.06] | 1.2 |
| 3 | [14:30, 15:55] | [0.45, 1.50] | 1.3 |
| 4 | [17:50, 19:13] | [3.60, 1.45] | 2.1 |
| 5 | [17:10, 17:46] | [3.42, 4.76] | 1.2 |
| 6 | [16:40, 17:59] | [2.49, 1.12] | 1.7 |
| 7 | [14:30, 15:51] | [0.23, 3.13] | 1.2 |
| 8 | [15:20, 16:28] | [3.08, 2.56] | 2.3 |
| 9 | [13:00, 13:52] | [3.85, 0.10] | 3.0 |
| 10 | [13:20, 14:20] | [3.16, 3.74] | 1.3 |
| 11 | [14:00, 14:59] | [0.84, 0.44] | 2.6 |
| 12 | [15:40, 16:10] | [1.86, 3.36] | 2.2 |
| 13 | [17:00, 18:04] | [2.21, 2.17] | 1.5 |
| 14 | [12:10, 13:36] | [4.58, 3.57] | 3.8 |
| 15 | [16:10, 16:54] | [4.54, 1.59] | 1.1 |
| 16 | [16:10, 17:30] | [0.56, 4.14] | 2.7 |
| 17 | [17:20, 18:00] | [3.25, 3.00] | 2.4 |
| 18 | [9:30, 10:36] | [0.01, 2.56] | 2.8 |
| 19 | [14:30, 15:44] | [2.71, 0.71] | 1.7 |
| 20 | [13:50, 15:15] | [4.02, 2.60] | 0.6 |
| UAV_ID | 客户ID送达顺序 |
|---|---|
| 1 | 0 → 3 → 7 → 20 → 19 → 0 |
| 2 | 0 → 16 → 0 → 4 → 0 |
| 3 | 0 → 14 → 0 → 12 → 0 → 13 → 6 → 0 |
| 4 | 0 → 18 → 0 → 1 → 10 → 2 → 0 |
| 5 | 0 → 11 → 0 |
| 6 | 0 → 15 → 8 → 0 |
| 7 | 0 → 9 → 0 → 5 → 17 → 0 |
表3 UAV送达包裹的顺序
Tab.3 Task execution sequence of UAVs
| UAV_ID | 客户ID送达顺序 |
|---|---|
| 1 | 0 → 3 → 7 → 20 → 19 → 0 |
| 2 | 0 → 16 → 0 → 4 → 0 |
| 3 | 0 → 14 → 0 → 12 → 0 → 13 → 6 → 0 |
| 4 | 0 → 18 → 0 → 1 → 10 → 2 → 0 |
| 5 | 0 → 11 → 0 |
| 6 | 0 → 15 → 8 → 0 |
| 7 | 0 → 9 → 0 → 5 → 17 → 0 |
| 客户ID | 时间窗 | UAV 到达时间 | 客户ID | 时间窗 | UAV 到达时间 |
|---|---|---|---|---|---|
| 1 | [16:30,17:15] | 16:38 | 11 | [17:50,18:20] | 17:50 |
| 2 | [14:30,15:55] | 15:14 | 12 | [10:20,11:25] | 10:20 |
| 3 | [15:40,17:02] | 17:00 | 13 | [15:40,17:06] | 16:27 |
| 4 | [15:30,16:06] | 15:30 | 14 | [16:10,16:55] | 16:10 |
| 5 | [10:30,11:50] | 10:30 | 15 | [16:10,17:30] | 16:10 |
| 6 | [14:30,15:50] | 14:30 | 16 | [13:50,14:55] | 14:41 |
| 7 | [15:40,16:50] | 16:23 | 17 | [17:50,18:30] | 18:02 |
| 8 | [13:00,13:30] | 13:00 | 18 | [16:20,17:35] | 17:12 |
| 9 | [16:50,17:50] | 16:50 | 19 | [13:50,15:15] | 14:58 |
| 10 | [11:20,12:10] | 11:20 | 20 | [17:00,17:30] | 17:08 |
表4 客户的时间窗要求和UAV到达时间
Tab.4 Customers’ time window requirements and UAV arrival time
| 客户ID | 时间窗 | UAV 到达时间 | 客户ID | 时间窗 | UAV 到达时间 |
|---|---|---|---|---|---|
| 1 | [16:30,17:15] | 16:38 | 11 | [17:50,18:20] | 17:50 |
| 2 | [14:30,15:55] | 15:14 | 12 | [10:20,11:25] | 10:20 |
| 3 | [15:40,17:02] | 17:00 | 13 | [15:40,17:06] | 16:27 |
| 4 | [15:30,16:06] | 15:30 | 14 | [16:10,16:55] | 16:10 |
| 5 | [10:30,11:50] | 10:30 | 15 | [16:10,17:30] | 16:10 |
| 6 | [14:30,15:50] | 14:30 | 16 | [13:50,14:55] | 14:41 |
| 7 | [15:40,16:50] | 16:23 | 17 | [17:50,18:30] | 18:02 |
| 8 | [13:00,13:30] | 13:00 | 18 | [16:20,17:35] | 17:12 |
| 9 | [16:50,17:50] | 16:50 | 19 | [13:50,15:15] | 14:58 |
| 10 | [11:20,12:10] | 11:20 | 20 | [17:00,17:30] | 17:08 |
| UAV_ID | 客户ID送达顺序 |
|---|---|
| 1 | 0 → 6 → 19 → 2 → 0 → 15 → 13 → 1 → 0 |
| 2 | 0 → 5 → 0 → 16 → 0 |
| 3 | 0 → 12 → 0 → 4 → 0 |
| 4 | 0 → 14 → 7 → 0 → 3 → 18 → 0 |
| 5 | 0 → 11 → 17 → 0 |
| 6 | 0 → 9 → 20 → 0 |
| 7 | 0 → 10 → 0 → 8 → 0 |
表5 改变时间窗后UAV的任务送达顺序
Tab.5 Task execution sequence of UAVs after changing time window
| UAV_ID | 客户ID送达顺序 |
|---|---|
| 1 | 0 → 6 → 19 → 2 → 0 → 15 → 13 → 1 → 0 |
| 2 | 0 → 5 → 0 → 16 → 0 |
| 3 | 0 → 12 → 0 → 4 → 0 |
| 4 | 0 → 14 → 7 → 0 → 3 → 18 → 0 |
| 5 | 0 → 11 → 17 → 0 |
| 6 | 0 → 9 → 20 → 0 |
| 7 | 0 → 10 → 0 → 8 → 0 |
| 组序 | 奖励值 | 距离/km | 算法时长/s | 组序 | 奖励值 | 距离/km | 算法时长/s | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.025 | 0.475 | 0.500 | 0.005 8 | 107.115 | 648.00 | 11 | 0.275 | 0.225 | 0.500 | 0.007 3 | 104.740 | 623.05 |
| 2 | 0.050 | 0.450 | 0.500 | 0.006 3 | 107.480 | 628.00 | 12 | 0.300 | 0.200 | 0.500 | 0.007 4 | 103.950 | 598.22 |
| 3 | 0.075 | 0.425 | 0.500 | 0.006 1 | 106.750 | 633.32 | 13 | 0.325 | 0.175 | 0.500 | 0.003 3 | 104.340 | 615.14 |
| 4 | 0.100 | 0.400 | 0.500 | 0.006 4 | 106.320 | 757.59 | 14 | 0.350 | 0.150 | 0.500 | 0.003 0 | 105.140 | 613.58 |
| 5 | 0.125 | 0.375 | 0.500 | 0.005 9 | 106.970 | 700.83 | 15 | 0.375 | 0.125 | 0.500 | 0.002 3 | 106.730 | 613.10 |
| 6 | 0.150 | 0.350 | 0.500 | 0.005 0 | 106.440 | 596.80 | 16 | 0.400 | 0.100 | 0.500 | 0.002 3 | 106.600 | 581.15 |
| 7 | 0.175 | 0.325 | 0.500 | 0.004 8 | 105.670 | 636.85 | 17 | 0.425 | 0.075 | 0.500 | 0.002 2 | 105.210 | 608.78 |
| 8 | 0.200 | 0.300 | 0.500 | 0.004 2 | 105.240 | 612.48 | 18 | 0.450 | 0.050 | 0.500 | 0.002 1 | 106.900 | 606.85 |
| 9 | 0.225 | 0.275 | 0.500 | 0.005 9 | 105.120 | 616.10 | 19 | 0.475 | 0.025 | 0.500 | 0.002 0 | 105.460 | 623.10 |
| 10 | 0.250 | 0.250 | 0.500 | 0.006 5 | 105.140 | 598.00 |
表6 不同任务目标函数权重对于实验结果的影响
Tab.6 Influence of different task objective function weights on experimental results
| 组序 | 奖励值 | 距离/km | 算法时长/s | 组序 | 奖励值 | 距离/km | 算法时长/s | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.025 | 0.475 | 0.500 | 0.005 8 | 107.115 | 648.00 | 11 | 0.275 | 0.225 | 0.500 | 0.007 3 | 104.740 | 623.05 |
| 2 | 0.050 | 0.450 | 0.500 | 0.006 3 | 107.480 | 628.00 | 12 | 0.300 | 0.200 | 0.500 | 0.007 4 | 103.950 | 598.22 |
| 3 | 0.075 | 0.425 | 0.500 | 0.006 1 | 106.750 | 633.32 | 13 | 0.325 | 0.175 | 0.500 | 0.003 3 | 104.340 | 615.14 |
| 4 | 0.100 | 0.400 | 0.500 | 0.006 4 | 106.320 | 757.59 | 14 | 0.350 | 0.150 | 0.500 | 0.003 0 | 105.140 | 613.58 |
| 5 | 0.125 | 0.375 | 0.500 | 0.005 9 | 106.970 | 700.83 | 15 | 0.375 | 0.125 | 0.500 | 0.002 3 | 106.730 | 613.10 |
| 6 | 0.150 | 0.350 | 0.500 | 0.005 0 | 106.440 | 596.80 | 16 | 0.400 | 0.100 | 0.500 | 0.002 3 | 106.600 | 581.15 |
| 7 | 0.175 | 0.325 | 0.500 | 0.004 8 | 105.670 | 636.85 | 17 | 0.425 | 0.075 | 0.500 | 0.002 2 | 105.210 | 608.78 |
| 8 | 0.200 | 0.300 | 0.500 | 0.004 2 | 105.240 | 612.48 | 18 | 0.450 | 0.050 | 0.500 | 0.002 1 | 106.900 | 606.85 |
| 9 | 0.225 | 0.275 | 0.500 | 0.005 9 | 105.120 | 616.10 | 19 | 0.475 | 0.025 | 0.500 | 0.002 0 | 105.460 | 623.10 |
| 10 | 0.250 | 0.250 | 0.500 | 0.006 5 | 105.140 | 598.00 |
| [1] | 吕璐璐,侯庆丰. 西北农村物流“最后一公里”配送问题及对策研究[J]. 物流科技, 2024, 47(15): 40-42, 54. |
| LYU L L, HOU Q F. Research on the “last kilometer” distribution problems and countermeasures of rural logistics in Northwest China[J]. Logistics Sci-Tech, 2024, 47(15): 40-42, 54. | |
| [2] | ESKANDARIPOUR H, BOLDSAIKHAN E. Last-mile drone delivery: past, present, and future[J]. Drones, 2023, 7(2): No.77. |
| [3] | 李章萍,贺亚蒙. 基于GA-SA组合算法的山区复杂环境无人机起降点选址[J]. 科学技术与工程, 2024, 24(2): 850-857. |
| LI Z P, HE Y M. Site selection of unmanned aerial vehicle take-off and landing points in mountainous complex environments based on GA-SA combination algorithm[J]. Science Technology and Engineering, 2024, 24(2): 850-857. | |
| [4] | 陈希琼,王兴隆,胡大伟. 考虑等待成本的卡车与多无人机联合配送农村物流路径优化[J]. 运筹与管理, 2024, 33(8): 23-29. |
| CHEN X Q, WANG X L, HU D W. Rural e-commerce logistics route optimization by joint truck and multi-drone delivery considering waiting cost[J]. Operations Research and Management Science, 2024, 33(8): 23-29. | |
| [5] | 韩鹏,张冰玉. 基于改进蚁群算法的无人机安全航路规划研究[J]. 中国安全科学学报, 2021, 31(1): 24-29. |
| HAN P, ZHANG B Y. Safety route planning of UAV based on improved ant colony algorithm[J]. Chinese Safety Science Journal, 2021, 31(1): 24-29. | |
| [6] | 郭兴海,计明军,温都苏,等. “最后一公里”配送的分布式多无人机的任务分配和路径规划[J]. 系统工程理论与实践, 2021, 41(4): 946-961. |
| GUO X H, JI M J, WEN D S, et al. Task assignment and path planning for distributed multiple unmanned aerial vehicles in the “last mile” [J]. Systems Engineering — Theory and Practice, 2021, 41(4): 946-961. | |
| [7] | 伍国华,毛妮,徐彬杰,等. 基于自适应大规模邻域搜索算法的多车辆与多无人机协同配送方法[J]. 控制与决策, 2023, 38(1): 201-210. |
| WU G H, MAO N, XU B J, et al. The cooperative delivery of multiple vehicles and multiple drones based on adaptive large neighborhood search[J]. Control and Decision, 2023, 38(1): 201-210. | |
| [8] | 张歆悦,靳鹏,胡笑旋,等. 时间依赖型多配送中心带时间窗的开放式车辆路径问题研究[J]. 中国管理科学, 2024, 32(1): 146-157. |
| ZHANG X Y, JIN P, HU X X, et al. Research on the time-dependent multi-depot open vehicle routing problem with time windows[J]. Chinese Journal of Management Science, 2024, 32(1): 146-157. | |
| [9] | 苏欣欣,秦虎,王恺. 禁忌搜索算法求解带时间窗和多配送人员的车辆路径问题[J]. 重庆师范大学学报(自然科学版), 2020, 37(1): 22-30. |
| SU X X, QIN H, WANG K. Tabu search algorithm for the vehicle routing problem with time windows and multiple deliverymen[J]. Journal of Chongqing Normal University (Natural Science), 2020, 37(1): 22-30. | |
| [10] | DELL’ AMICO M, MONTEMANNI R, NOVELLANI S. Matheuristic algorithms for the parallel drone scheduling traveling salesman problem[J]. Annals of Operations Research, 2020, 289(2): 211-226. |
| [11] | 王迪,金辉. 贪婪鲸鱼优化算法求解带时间窗的快递末端配送路径问题[J]. 计算机应用与软件, 2020, 37(6): 263-268. |
| WANG D, JIN H. Greedy whale optimization algorithm for solving the delivery path problem of express delivery with time window at the end[J]. Computer Applications and Software, 2020, 37(6): 263-268. | |
| [12] | AGRAWAL A, BEDI A S, MANOCHA D. RTAW: an attention inspired reinforcement learning method for multi-robot task allocation in warehouse environments[C]// Proceedings of the 2023 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2023: 1393-1399. |
| [13] | SHIBATA K, JIMBO T, ODASHIMA T, et al. Learning locally, communicating globally: reinforcement learning of multi-robot task allocation for cooperative transport[J]. IFAC Papers OnLine, 2023, 56(2): 11436-11443. |
| [14] | HO T M, NGUYEN K K, CHERIET M. Federated deep reinforcement learning for task scheduling in heterogeneous autonomous robotic system[J]. IEEE Transactions on Automation Science and Engineering, 2022, 21(1): 528-540. |
| [15] | 张雪锋,卫凯莉,姜文. 一种n维组合混沌映射及性能分析[J]. 西安邮电大学学报, 2020, 25(6): 52-62. |
| ZHANG X F, WEI K L, JIANG W. An n-dimensional combined chaotic mapping and performance analysis[J]. Journal of Xi’an University of Posts and Telecommunications, 2020, 25(6): 52-62. | |
| [16] | 蒋伟进,张婉清,陈萍萍,等. 基于IWOA群智感知中数量敏感的任务分配方法[J]. 电子学报, 2022, 50(10): 2489-2502. |
| JIANG W J, ZHANG W Q, CHEN P P, et al. Quantity sensitive task allocation method based on IWOA swarm intelligence perception[J]. Acta Electronica Sinica, 2022, 50(10): 2489-2502. | |
| [17] | LIU Y, YE Q, ESCRIBANO-MACIAS J, et al. Route planning for last-mile deliveries using mobile parcel lockers: a hybrid Q-learning network approach[J]. Transportation Research Part E: Logistics and Transportation Review, 2023, 177: No.103234. |
| [18] | YU Y, GAO S, CHENG S, et al. CBSO: a memetic brain storm optimization with chaotic local search[J]. Memetic Computing, 2018, 10(4): 353-367. |
| [19] | ROPKE S, PISINGER D.An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[J]. Transportation Science, 2006,40(4): 455-472. |
| [1] | 刘哲旭, 张澳冰, 樊智勇. 飞机狭小空间虚拟维修姿态分层求解方法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2694-2703. |
| [2] | 汤恒先, 姚远, 康浩翔. 基于容器的规模化无人机集群仿真引擎研究与实现[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2704-2711. |
| [3] | 袁志超, 杨磊, 田井林, 魏晓威, 李康顺. 面向复杂约束多目标优化问题的双种群双阶段进化算法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2656-2665. |
| [4] | 范博淦, 王淑青, 陈开元. 基于改进YOLOv8的航拍无人机小目标检测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2342-2350. |
| [5] | 李姝, 刘国庆, 李思远, 秦耀昌. 大范围复杂环境下多无人机的快速全自主探索方法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2317-2324. |
| [6] | 薛天宇, 李爱萍, 段利国. 联合任务卸载和资源优化的车辆边缘计算方案[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1766-1775. |
| [7] | 许鹏程, 何磊, 李川, 钱炜祺, 赵暾. 基于Transformer的深度符号回归方法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1455-1463. |
| [8] | 谭瑛, 任新宇, 孙超利, 王思思. 两阶段填充采样的半监督昂贵多目标优化算法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1605-1612. |
| [9] | 林柄权, 刘磊, 李华峰, 刘晨. DoS攻击下基于APF和DDPG算法的无人机安全集群控制[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1241-1248. |
| [10] | 王兴旺, 张清杨, 姜守勇, 董永权. 基于改进鲸鱼优化算法的动态无人机路径规划[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 928-936. |
| [11] | 胡林波, 倪志伟, 程家乐, 刘文涛, 朱旭辉. 融合社区检测的协作众包任务分配方法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 534-545. |
| [12] | 王靖, 方旭明. Wi-Fi7多链路通感一体化的功率和信道联合智能分配算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 563-570. |
| [13] | 王华华, 黄梁, 陈甲杰, 方杰宁. 基于深度强化学习的低轨卫星多波束子载波动态分配算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 571-577. |
| [14] | 肖海林, 田波, 胡彬, 孔祥婷, 吴媛媛, 马仁煜, 张中山. 基于信道先验多尺度跨轴注意YOLO的无人机视角下多尺度小目标检测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 4021-4029. |
| [15] | 王诚熠, 徐磊, 陈晋音, 邱洪君. 基于自适应扰动的网络防测绘方法[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 3896-3908. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||