1 |
TANG D, QIN B, LIU T. Document modeling with gated recurrent neural network for sentiment classification[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 1422-1432.
|
2 |
DING B, LIU L, BING L, et al. DAGA: data augmentation with a generation approach for low-resource tagging tasks[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 6045-6057.
|
3 |
KOBAYASHI S. Contextual augmentation: data augmentation by words with paradigmatic relations[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers) . Stroudsburg: ACL, 2018: 452-457.
|
4 |
CHEN H, HAN W, YANG D, et al. DoubleMix: simple interpolation-based data augmentation for text classification[C]// Proceedings of the 29th International Conference on Computational Linguistics. [S.l.]: International Committee on Computational Linguistics, 2022: 4622-4632.
|
5 |
余新言,曾诚,王乾,等. 基于知识增强和提示学习的小样本新闻主题分类方法[J]. 计算机应用, 2024, 44(6): 1767-1774.
|
|
YU X Y, ZENG C, WANG Q, et al. Few-shot news topic classification method based on knowledge enhancement and prompt learning[J]. Journal of Computer Applications, 2024, 44(6): 1767-1774.
|
6 |
SHORTEN C, KHOSHGOFTAAR T M, FURHT B. Text data augmentation for deep learning[J]. Journal of Big Data, 2021, 8: No.101.
|
7 |
MÜLLER R, KORNBLITH S, HINTON G E. When does label smoothing help?[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 4694-4703.
|
8 |
JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2017: 562-570.
|
9 |
JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification[C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. Stroudsburg: ACL, 2016: 427-431.
|
10 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186.
|
11 |
BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]// Proceedings of the 34th Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 1877-1901.
|
12 |
LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL]. [2023-11-12]..
|
13 |
姚迅,秦忠正,杨捷. 生成式标签对抗的文本分类模型[J]. 计算机应用, 2024, 44(6): 1781-1785.
|
|
YAO X, QIN Z Z, YANG J. Generative label adversarial text classification model[J]. Journal of Computer Applications, 2024, 44(6): 1781-1785.
|
14 |
张海丰,曾诚,潘列,等. 结合BERT和特征投影网络的新闻主题文本分类方法[J]. 计算机应用, 2022, 42(4): 1116-1124.
|
|
ZHANG H F, ZENG C, PAN L, et al. News topic text classification method based on BERT and feature projection network[J]. Journal of Computer Applications, 2022, 42(4): 1116-1124.
|
15 |
ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8697-8710.
|
16 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
17 |
SONG Y, WANG J, JIANG T, et al. Targeted sentiment classification with attentional encoder network[C]// Proceedings of the 2019 International Conference on Artificial Neural Networks, LNCS 11730. Cham: Springer, 2019: 93-103.
|
18 |
LUKASIK M, BHOJANAPALLI S, MENON A K, et al. Does label smoothing mitigate label noise?[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 6448-6458.
|
19 |
GUO B, HAN S, HAN X, et al. Label confusion learning to enhance text classification models[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 12929-12936.
|
20 |
WEI J, ZOU K. EDA: easy data augmentation techniques for boosting performance on text classification tasks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 6382-6388.
|
21 |
KARIMI A, ROSSI L, PRATI A. AEDA: an easier data augmentation technique for text classification[C]// Findings of the Association for Computational Linguistics: EMNLP 2021. Stroudsburg: ACL, 2021: 2748-2754.
|
22 |
WU X, GAO C, LIN M, et al. Text smoothing: enhance various data augmentation methods on text classification tasks[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg: ACL, 2022: 871-875.
|
23 |
LIU P, QIU X, HUANG X. Recurrent neural network for text classification with multi-task learning[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2016: 2873-2879.
|
24 |
KIM Y. Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746-1751.
|
25 |
PUTRA D T, SETIAWAN E B. Sentiment analysis on social media with GloVe using combination CNN and RoBERTa[J]. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 2023, 7(3): 457-563.
|
26 |
SEMARY N A, AHMED W, AMIN K, et al. Improving sentiment classification using a RoBERTa-based hybrid model[J]. Frontiers in Human Neuroscience, 2023, 17: No.1292010.
|
27 |
CHOI J, JIN K, LEE J, et al. softEDA: rethinking rule-based data augmentation with soft labels[EB/OL]. [2023-11-12]..
|