《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (9): 2934-2940.DOI: 10.11772/j.issn.1001-9081.2024091362
• 先进计算 • 上一篇
收稿日期:
2024-09-24
修回日期:
2024-11-12
接受日期:
2024-11-13
发布日期:
2024-11-26
出版日期:
2025-09-10
通讯作者:
梁永濠
作者简介:
李金龙(1975—),男,湖南永州人,副教授,博士,主要研究方向:深度学习、人工智能、进化算法。
Received:
2024-09-24
Revised:
2024-11-12
Accepted:
2024-11-13
Online:
2024-11-26
Published:
2025-09-10
Contact:
Yonghao LIANG
About author:
LI Jinlong, born in 1975, Ph. D., associate professor. His research interests include deep learning, artificial intelligence, evolutionary algorithm.
摘要:
为优化端到端神经布尔可满足性问题(SAT)求解器的消息传递神经网络(MPNN)结构、减少求解过程中的迭代次数并提升求解器性能,提出一种更多更深的消息传递网络(MDMPN)。该网络通过引入整体消息传递模块,在每次消息传递迭代中实现从文字节点到子句节点的额外的整体消息传递,从而传递更多的消息。同时,引入消息跳跃模块,实现从文字节点到它的二阶邻居的消息传递,从而传递更深的消息。为了评估MDMPN的性能与泛化能力,将它应用于目前先进的神经SAT求解器QuerySAT和基础神经SAT求解器NeuroSAT。实验结果表明,在困难随机的3-SAT数据集上,应用MDMPN的QuerySAT的求解性能优于标准的QuerySAT,在求解包含600个变量迭代次数上限为212的困难3-SAT问题上的准确率提高了46.12个百分点;应用MDMPN的NeuroSAT的求解性能也优于标准的NeuroSAT,在求解包含600个变量迭代次数上限为212的困难3-SAT问题上的准确率提高了35.69个百分点。
中图分类号:
梁永濠, 李金龙. 用于神经布尔可满足性问题求解器的新型消息传递网络[J]. 计算机应用, 2025, 45(9): 2934-2940.
Yonghao LIANG, Jinlong LI. Novel message passing network for neural Boolean satisfiability problem solver[J]. Journal of Computer Applications, 2025, 45(9): 2934-2940.
变量数 | NeuroSAT的准确率/% | NeuroSAT-M的准确率/% | QuerySAT的准确率/% | QuerySAT-M的准确率/% | AEEV的准确率/% | |||||
---|---|---|---|---|---|---|---|---|---|---|
T=29 | T=212 | T=29 | T=212 | T=29 | T=212 | T=29 | T=212 | T=29 | T=212 | |
100 | 86.78 | 89.51 | 96.34 | 99.59 | 98.53 | 99.70 | 99.39 | 99.96 | 99.22 | 99.91 |
150 | 76.45 | 80.20 | 91.08 | 98.72 | 95.21 | 98.63 | 98.02 | 99.78 | 97.72 | 99.75 |
200 | 68.70 | 73.09 | 84.40 | 96.85 | 89.88 | 96.17 | 95.36 | 99.31 | 94.52 | 99.31 |
250 | 59.76 | 64.76 | 74.37 | 93.96 | 82.47 | 92.01 | 90.89 | 98.69 | 90.22 | 98.42 |
300 | 53.68 | 59.28 | 67.21 | 92.12 | 73.23 | 85.34 | 85.55 | 97.52 | 85.20 | 97.13 |
350 | 47.12 | 52.15 | 58.20 | 88.56 | 62.67 | 74.76 | 80.41 | 95.75 | 78.60 | 95.27 |
400 | 39.90 | 45.88 | 50.36 | 84.79 | 53.13 | 62.34 | 73.62 | 94.55 | 70.18 | 92.18 |
450 | 35.20 | 40.64 | 46.01 | 80.21 | 45.09 | 51.87 | 66.27 | 90.72 | 64.89 | 89.37 |
500 | 30.87 | 37.12 | 38.59 | 75.06 | 35.84 | 41.79 | 58.06 | 87.15 | 56.11 | 85.21 |
550 | 26.57 | 32.06 | 32.21 | 69.45 | 29.35 | 35.51 | 49.01 | 80.86 | 45.98 | 78.62 |
600 | 24.29 | 30.33 | 29.40 | 66.02 | 26.68 | 32.56 | 45.54 | 78.68 | 40.58 | 76.96 |
表1 NeuroSAT、NeuroSAT-M、QuerySAT、QuerySAT-M和AEEV的准确率对比
Tab. 1 Accuracy comparison of NeuroSAT, NeuroSAT-M, QuerySAT, QuerySAT-M and AEEV
变量数 | NeuroSAT的准确率/% | NeuroSAT-M的准确率/% | QuerySAT的准确率/% | QuerySAT-M的准确率/% | AEEV的准确率/% | |||||
---|---|---|---|---|---|---|---|---|---|---|
T=29 | T=212 | T=29 | T=212 | T=29 | T=212 | T=29 | T=212 | T=29 | T=212 | |
100 | 86.78 | 89.51 | 96.34 | 99.59 | 98.53 | 99.70 | 99.39 | 99.96 | 99.22 | 99.91 |
150 | 76.45 | 80.20 | 91.08 | 98.72 | 95.21 | 98.63 | 98.02 | 99.78 | 97.72 | 99.75 |
200 | 68.70 | 73.09 | 84.40 | 96.85 | 89.88 | 96.17 | 95.36 | 99.31 | 94.52 | 99.31 |
250 | 59.76 | 64.76 | 74.37 | 93.96 | 82.47 | 92.01 | 90.89 | 98.69 | 90.22 | 98.42 |
300 | 53.68 | 59.28 | 67.21 | 92.12 | 73.23 | 85.34 | 85.55 | 97.52 | 85.20 | 97.13 |
350 | 47.12 | 52.15 | 58.20 | 88.56 | 62.67 | 74.76 | 80.41 | 95.75 | 78.60 | 95.27 |
400 | 39.90 | 45.88 | 50.36 | 84.79 | 53.13 | 62.34 | 73.62 | 94.55 | 70.18 | 92.18 |
450 | 35.20 | 40.64 | 46.01 | 80.21 | 45.09 | 51.87 | 66.27 | 90.72 | 64.89 | 89.37 |
500 | 30.87 | 37.12 | 38.59 | 75.06 | 35.84 | 41.79 | 58.06 | 87.15 | 56.11 | 85.21 |
550 | 26.57 | 32.06 | 32.21 | 69.45 | 29.35 | 35.51 | 49.01 | 80.86 | 45.98 | 78.62 |
600 | 24.29 | 30.33 | 29.40 | 66.02 | 26.68 | 32.56 | 45.54 | 78.68 | 40.58 | 76.96 |
迭代次数 上限 | 不同模块的准确率/% | |||
---|---|---|---|---|
QuerySAT | +O | +J | +O+J | |
27 | 39.91 | 45.16 | 42.96 | 45.98 |
28 | 47.35 | 55.76 | 56.68 | 61.13 |
29 | 53.13 | 64.64 | 69.59 | 73.62 |
210 | 56.91 | 72.13 | 79.51 | 82.90 |
211 | 59.96 | 77.57 | 85.27 | 89.44 |
表2 消融实验中各模块的准确率对比
Tab. 2 Accuracy comparison of different modules in ablation study
迭代次数 上限 | 不同模块的准确率/% | |||
---|---|---|---|---|
QuerySAT | +O | +J | +O+J | |
27 | 39.91 | 45.16 | 42.96 | 45.98 |
28 | 47.35 | 55.76 | 56.68 | 61.13 |
29 | 53.13 | 64.64 | 69.59 | 73.62 |
210 | 56.91 | 72.13 | 79.51 | 82.90 |
211 | 59.96 | 77.57 | 85.27 | 89.44 |
β | 不同网络的准确率/% | |
---|---|---|
NeuroSAT-M | QuerySAT-M | |
23 | 40.39 | 21.42 |
24 | 71.67 | 41.98 |
25 | 89.59 | 78.65 |
26 | 92.11 | 79.49 |
27 | 91.23 | 78.28 |
28 | 91.36 | 73.50 |
表3 求解准确率随β的变化
Tab. 3 Solving accuracy varying with value of β
β | 不同网络的准确率/% | |
---|---|---|
NeuroSAT-M | QuerySAT-M | |
23 | 40.39 | 21.42 |
24 | 71.67 | 41.98 |
25 | 89.59 | 78.65 |
26 | 92.11 | 79.49 |
27 | 91.23 | 78.28 |
28 | 91.36 | 73.50 |
模型 | 求解准确率/% | 求解耗时/s |
---|---|---|
NeuroSAT | 38.86 | 1 261 |
NeuroSAT-M | 52.12 | 1 037 |
QuerySAT | 50.64 | 880 |
QuerySAT-M | 60.96 | 752 |
表4 不同模型在SAT竞赛数据集上的性能对比
Tab. 4 Performance comparison of different models on SAT competition dataset
模型 | 求解准确率/% | 求解耗时/s |
---|---|---|
NeuroSAT | 38.86 | 1 261 |
NeuroSAT-M | 52.12 | 1 037 |
QuerySAT | 50.64 | 880 |
QuerySAT-M | 60.96 | 752 |
[1] | COOK S A. The complexity of theorem-proving procedures [M]// Logic, automata, and computational complexity: the works of Stephen A. Cook. New York: ACM, 2023: 143-152. |
[2] | VIZEL Y, WEISSENBACHER G, MALIK S. Boolean satisfiability solvers and their applications in model checking [J]. Proceedings of the IEEE, 2015, 103(11): 2021-2035. |
[3] | KUEHLMANN A, PARUTHI V, KROHM F, et al. Robust Boolean reasoning for equivalence checking and functional property verification [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2002, 21(12): 1377-1394. |
[4] | IVANČIĆ F, YANG Z, GANAI M K, et al. Efficient SAT-based bounded model checking for software verification [J]. Theoretical Computer Science, 2008, 404(3): 256-274. |
[5] | PRASAD M R, BIERE A, GUPTA A. A survey of recent advances in SAT-based formal verification [J]. International Journal on Software Tools for Technology Transfer, 2005, 7(2): 156-173. |
[6] | MIRONOV I, ZHANG L. Applications of SAT solvers to cryptanalysis of hash functions [C]// Proceedings of the 2006 International Conference on Theory and Applications of Satisfiability Testing, LNCS 4121. Berlin: Springer, 2006: 102-115. |
[7] | PLACHETTA R, VAN DER GRINTEN A. SAT-and-reduce for vertex cover: accelerating branch-and-reduce by sat solving [C]// Proceedings of the 2021 Workshop on Algorithm Engineering and Experiments. Philadelphia, PA: SIAM, 2021: 169-180. |
[8] | SKANSI S, ŠEKRST K, KARDUM M. A different approach for clique and household analysis in synthetic telecom data using propositional logic [C]// Proceedings of the 43rd International Convention on Information, Communication and Electronic Technology. Piscataway: IEEE, 2020: 1286-1289. |
[9] | VELEV M N. Exploiting hierarchy and structure to efficiently solve graph coloring as SAT [C]// Proceedings of the 2007 IEEE/ACM International Conference on Computer-Aided Design. Piscataway: IEEE, 2007: 135-142. |
[10] | 郭莹,张长胜,张斌. 求解SAT问题的算法的研究进展[J]. 计算机科学, 2016, 43(3):8-17. |
GUO Y, ZHANG C S, ZHANG B. Research advance of SAT solving algorithm [J]. Computer Science, 2016, 43(3):8-17. | |
[11] | 谢志新,王晓峰,曹泽轩,等. 求解可满足性问题的信息传播算法研究综述[J]. 计算机应用研究, 2022, 39(7):1933-1940. |
XIE Z X, WANG X F, CAO Z X, et.al. Overview of message propagation algorithm for satisfiability problems [J]. Application Research of Computers, 2022, 39(7):1933-1940. | |
[12] | GUO W, ZHEN H L, LI X, et al. Machine learning methods in solving the Boolean satisfiability problem [J]. Machine Intelligence Research, 2023, 20(5): 640-655. |
[13] | AMIZADEH S, MATUSEVYCH S, WEIMER M. Learning to solve Circuit-SAT: an unsupervised differentiable approach [EB/OL]. [2024-03-12].. |
[14] | ZHANG C, ZHANG Y, MAO J, et al. Towards better generalization for neural network-based sat solvers [C]// Proceedings of the 2022 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 13281. Cham: Springer, 2022: 199-210. |
[15] | SELSAM D, LAMM M, BÜNZ B, et al. Learning a SAT solver from single-bit supervision [EB/OL]. [2024-04-15].. |
[16] | OZOLINS E, FREIVALDS K, DRAGUNS A, et al. Goal-aware neural SAT solver[C]// Proceedings of the 2022 International Joint Conference on Neural Networks. Piscataway: IEEE, 2022: 1-8. |
[17] | LI Z, SI X. NSNet: a general neural probabilistic framework for satisfiability problems [C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 25573-25585. |
[18] | BIERE A, HEULE M, VAN MAAREN H, et al. Handbook of satisfiability [M]. Amsterdam: IOS Press, 2009. |
[19] | GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry [C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1263-1272. |
[20] | BATATIA I, KOVÁCS D P, SIMM G N C, et al. MACE: higher order equivariant message passing neural networks for fast and accurate force fields [C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 11423-11436. |
[21] | TSEITIN G S. On the complexity of derivation in propositional calculus [M]// SIEKMANN H, WRIGHTSON G. Automation of reasoning 2: classical papers on computational logic 1967—1970, SYMBOLIC. Berlin: Springer, 1983: 466-483. |
[22] | BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks [EB/OL]. [2024-09-23].. |
[23] | SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network mode l [J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61-80. |
[24] | 龙峥嵘,李金龙,梁永濠. 基于SAT问题实例特性的端到端SAT求解模型[J]. 计算机应用研究, 2024, 41(11): 3376-3381. |
LONG Z R, LI J L, LIANG Y H. End-to-end SAT assignment model based on instance related characteristics of SAT [J]. Application Research of Computers, 2024, 41(11): 3376-3381. | |
[25] | CRAWFORD J M, AUTON L D. Experimental results on the crossover point in random 3-SAT [J]. Artificial Intelligence, 1996, 81(1/2): 31-57. |
[26] | LAURIA M, ELFFERS J, NORDSTRÖM J, et al. CNFGen: a generator of crafted benchmarks [C]// Proceedings of the 2017 International Conference on Theory and Applications of Satisfiability Testing, LNCS 10491. Cham: Springer, 2017: 464-473. |
[27] | CAMERON C, CHEN R, HARTFORD J, et al. Predicting propositional satisfiability via end-to-end learning [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 3324-3331. |
[1] | 刘超, 余岩化. 融合降噪策略与多视图对比学习的知识感知推荐模型[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2827-2837. |
[2] | 邓伊琳, 余发江. 基于LSTM和可分离自注意力机制的伪随机数生成器[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2893-2901. |
[3] | 赵彪, 秦玉华, 田荣坤, 胡月航, 陈芳锐. 依赖类型及距离增强的方面级情感分析模型[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2507-2514. |
[4] | 王义, 马应龙. 基于项图动态适应性生成的多任务社交项推荐方法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2592-2599. |
[5] | 涂银川, 郭勇, 毛恒, 任怡, 张建锋, 李宝. 基于分布式环境的图神经网络模型训练效率与训练性能评估[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2409-2420. |
[6] | 苏锦涛, 葛丽娜, 肖礼广, 邹经, 王哲. 联邦学习中针对后门攻击的检测与防御方案[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2399-2408. |
[7] | 葛丽娜, 王明禹, 田蕾. 联邦学习的高效性研究综述[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2387-2398. |
[8] | 蒋权, 黄文清, 苟志勇. 基于等变图神经网络的拉格朗日粒子流模拟[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2666-2671. |
[9] | 陈丹阳, 张长伦. 多尺度去相关的图卷积网络模型[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2180-2187. |
[10] | 张悦岚, 苏静, 赵航宇, 杨白利. 基于知识感知与交互的多视图蒸馏推荐算法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2211-2220. |
[11] | 赵小阳, 许新征, 李仲年. 物联网应用中的可解释人工智能研究综述[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2169-2179. |
[12] | 梁辰, 王奕森, 魏强, 杜江. 基于Tsransformer-GCN的源代码漏洞检测方法[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2296-2303. |
[13] | 张子墨, 赵雪专. 多尺度稀疏图引导的视觉图神经网络[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2188-2194. |
[14] | 姜超英, 李倩, 刘宁, 刘磊, 崔立真. 基于图对比学习的再入院预测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1784-1792. |
[15] | 郭书剑, 余节约, 尹学松. 图正则化弹性网子空间聚类[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1464-1471. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||