计算机应用 ›› 2013, Vol. 33 ›› Issue (10): 2827-2831.
赵一丁1,李志民1,王洪利2,刘卫光1,楚纪正3
ZHAO Yiding1,LI Zhimin1,WANG Hongli2,LIU Weiguang1,CHU Jizheng3
摘要: 针对工业仿真数学模型参数估计实践中的难点,提出了通过数据挖掘来修正模型参数的新方法。从实际生产的大量数据中挖掘样本,通过数学方法计算模型参数,针对包含噪声的工业生产数据主要采用改进了最小二乘方法来修正参数;根据工业生产数据不完全及常见分布特点,采用分段组合修正参数的方法;通过实际生产的动态过程的历史数据挖掘来估计动态特性的相关参数,模型参数修正与数据挖掘过程交互引导,来缩小海量工业数据中的挖掘范围及提高参数修正所需样本数据的充分性,并建立两者之间互相协调的网络模型。实际案例验证了方法在工程项目中的有效性和实用性,表明这种方法能大幅提高仿真精度
中图分类号: