[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2014:580-587. [2] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Berlin:Springer, 2016:21-37. [3] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6):91-99. [4] UIJLINGS J R R, van de SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171. [5] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916. [6] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2015:1440-1448. [7] DAI J, LI Y, HE K, et al. R-FCN:object detection via region-based fully convolutional networks[EB/OL].[2018-01-10]. http://papers.nips.cc/paper/6465-r-fcn-object-detection-via-region-based-fully-convolutional-networks.pdf. [8] CAI Z, FAN Q, FERIS R S, et al. A unified multi-scale deep convolutional neural network for fast object detection[C]//Proceedings of the 14th European Conference on Computer Vision. Berlin:Springer, 2016:354-370. [9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:779-788. [10] FU C-Y, LIU W, RANGA A, et al. DSSD:deconvolutional single shot detector[EB/OL].[2017-10-25]. https://arxiv.org/abs/1701.06659. [11] LIN T-Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[EB/OL].[2018-03-10] https://arxiv.org/abs/1708.02002. [12] STEWART R, ANDRILUKA M, NG A Y. End-to-end people detection in crowded scenes[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:2325-2333. [13] SERMANET P, EIGEN D, ZHANG X, et al. OverFeat:integrated recognition, localization and detection using convolutional networks[EB/OL].[2018-03-15]. https://arxiv.org/abs/1312.6229. [14] HUANG J, RATHOD V, SUN C, et al. Speed/accuracy trade-offs for modern convolutional object detectors[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2017:7310-7311. [15] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:770-778. [16] REN J, CHEN X, LIU J, et al. Accurate single stage detector using recurrent rolling convolution[EB/OL].[2017-12-25]. https://arxiv.org/abs/1704.05776. [17] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2012:3354-3361. [18] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2017:6517-6525. [19] 钟晓明, 余桂珍, 马亚龙, 等.基于快速区域卷积神经网络的交通标志识别算法研究[C]//中国汽车工程学会年会论文集.北京:中国汽车工程学会, 2016:2033-2036. (ZHONG X M, YU G Z, MA Y L, et al. Research on traffic sign recognition algorithm based on faster R-CNN[C]//Processings of the 2016 Annual Conference of Society of Automotive Engineers of China. Beijing:Society of Automotive Engineering of China, 2016:2033-2036.) [20] 王林, 张鹤鹤. Faster R-CNN模型在车辆检测中的应用[J]. 计算机应用, 2018, 38(3):666-670. (WANG L, ZHANG H H. Application of faster R-CNN model in vehicle detection[J]. Journal of Computer Applications, 2018, 38(3):666-670.) |