[1] DOSOVITSKIY A,FISCHER P,ILG E,et al. FlowNet:learning optical flow with convolutional networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:2758-2766. [2] ILG E,MAYER N,SAIKIA T,et al. FlowNet 2.0:evolution of optical flow estimation with deep networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:1647-1655. [3] NIKLAUS S,MAI L,LIU F. Video frame interpolation via adaptive convolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:2270-2279. [4] NIKLAUS S,MAI L,LIU F. Video frame interpolation via adaptive separable convolution[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:261-270. [5] LIU Z,YEH R A,TANG X,et al. Video frame synthesis using deep voxel flow[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:4473-4481. [6] JIANG H,SUN D,JAMPANI V,et al. Super SloMo:high quality estimation of multiple intermediate frames for video interpolation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:9000-9008. [7] NIKLAUS S,LIU F. Context-aware synthesis for video frame interpolation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:1701-1710. [8] LIU Y L,LIAO Y T,LIN Y Y,et al. Deep video frame interpolation using cyclic frame generation[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:8794-8802. [9] BAO W,LAI W-S,MA C,et al. Depth-aware video frame interpolation[EB/OL].[2019-05-23]. https://arxiv.org/pdf/1904.00830.pdf. [10] WANG R,TAO D. Recent progress in image deblurring[EB/OL].[2019-05-23]. https://arxiv.org/pdf/1409.6838.pdf. [11] KUPYN O,BUDZAN V,MYKHAILYCH M,et al. DeblurGAN:blind motion deblurring using conditional adversarial networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:8183-8192. [12] NAH S,KIM T H,MU LEE K. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:3883-3891. [13] TAO X,GAO H,SHEN X,et al. Scale-recurrent network for deep image deblurring[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:8174-8182. [14] RONNEBERGER O,FISCHER P,BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention,LNCS 9351. Cham:Springer,2015:234-241. [15] TAO X, GAO H, LIAO R, et al. Detail-revealing deep video superresolution[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:4482-4490. [16] PATHAK D,KRÄHENBÜHL P,DONAHUE J,et al. Context encoders:feature learning by inpainting[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:2536-2544. [17] SIMO-SERRA E,IIZUKA S,SASAKI K,et al. Learning to simplify:fully convolutional networks for rough sketch cleanup[J]. ACM Transactions on Graphics,2016,35(4):No. 121. [18] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [19] SU S,DELBRACIO M,WANG J,et al. Deep video deblurring for hand-held cameras[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:237-246. [20] SOOMRO K,ZAMIR A R,SHAH M. UCF101:a dataset of 101 human actions classes from videos in the wild[EB/OL].[2019-05-23]. https://arxiv.org/pdf/1212.0402.pdf. [21] KINGMA D P,BA J L. Adam:a method for stochastic optimization[EB/OL].[2019-05-23]. https://arxiv.org/pdf/1412.6980.pdf. [22] BAKER S,SCHARSTEIN D,LEWIS J P,et al. A database and evaluation methodology for optical flow[J]. International Journal of Computer Vision,2011,92(1):1-31. [23] KIM T,CHA M,KIM H,et al. Learning to discover cross-domain relations with generative adversarial networks[C]//Proceedings of the 34th International Conference on Machine Learning. New York:JMLR.org,2017:1857-1865. |