[1] ROY T, DEBORAHB. 糖尿病视网膜病变筛查手册诊断和处理[M].2版.陈浩宇,译.北京:人民卫生出版社, 2016:3. (ROY T, DEBORAH B. Handbook of Retinal Screening in Diabetes:Diagnosis and Management[M]. 2nd ed. CHEN H Y, translated. Beijing:People's Medical Publishing House, 2016:3.) [2] 陈喆,张士胜,朱惠敏,等.糖尿病视网膜病变的国际临床分类分析[J].国际眼科杂志,2011,11(8):1394-1401. (CHEN Z, ZHANG S S, ZHU H M, et al. Analysis of international clinical diabetic retinopathy disease severity scale[J]. International Journal of Ophthalmology, 2011, 11(8):1394-1401.) [3] WANG Z, YIN Y, SHI J, et al. Zoom-in-Net:deep mining lesions for diabetic retinopathy detection[C]//Proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 10435. Cham:Springer, 2017:267-275. [4] CHETOUI M, AKHLOUFI M A, KARDOUCHI M. Diabetic retinopathy detection using machine learning and texture features[C]//Proceedings of the 2018 IEEE Canadian Conference on Electrical and Computer Engineering. Piscataway:IEEE, 2018:1-4. [5] HARUN N H, YUSOF Y, HASSAN F, et al. Classification of fundus images for diabetic retinopathy using artificial neural network[C]//Proceedings of the 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology. Piscataway:IEEE, 2019:498-501. [6] GARGEYA R, LENG T. Automated identification of diabetic retinopathy using deep learning[J]. Ophthalmology, 2017, 124(7):962-969. [7] PRATT H, COENEN F, BROADBENT D M, et al. Convolutional neural networks for diabetic retinopathy[J]. Procedia Computer Science, 2016, 90:200-205. [8] GULSHAN V, PENG L, CORAM M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA:The Journal of American Medical Association, 2016, 316(22):2402-2410. [9] 彭英辉,张东波,沈奔. 基于多尺度匹配滤波和集成学习的眼底图像微脉瘤检测[J]. 计算机应用, 2013, 33(2):543-546, 566. (PENG Y H, ZHANG D B, SHEN B. Microaneurysm detection based on multi-scale match filtering and ensemble learning[J]. Journal of Computer Applications, 2013, 33(2):543-546, 566.) [10] SEOUD L, HURTUT T, CHELBI J, et al. Red lesion detection using dynamic shape features for diabetic retinopathy screening[J]. IEEE Transactions on Medical Imaging, 2016, 35(4):1116-1126. [11] JAAFAR H F, NANDI A K, AL-NUAIMY W. Automated detection and grading of hard exudates from retinal fundus images[C]//Proceedings of the 19th European Signal Processing Conference. Piscataway:IEEE, 2011:66-70. [12] HALOI M, DANDAPAT S, SINHA R. Gaussian scale space approach for exudates detection, classification and severity prediction[EB/OL].[2019-11-02].https://arxiv.org/pdf/1505.00737.pdf. [13] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [14] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778 [15] SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:761-769. [16] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:2818-2826. [17] ZENG X, CHEN H, LUO Y, et al. Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network[J]. IEEE Access, 2019, 7(1):30744-30753. |