《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (7): 2146-2154.DOI: 10.11772/j.issn.1001-9081.2021050744
收稿日期:
2021-05-10
修回日期:
2021-11-26
接受日期:
2021-12-21
发布日期:
2022-03-08
出版日期:
2022-07-10
通讯作者:
胡圣波
作者简介:
罗鸿秋(1997—),女,贵州龙里人,硕士研究生,主要研究方向:卫星通信、信息中心网络;
基金资助:
Hongqiu LUO1, Shengbo HU1,2()
Received:
2021-05-10
Revised:
2021-11-26
Accepted:
2021-12-21
Online:
2022-03-08
Published:
2022-07-10
Contact:
Shengbo HU
About author:
LUO Hongqiu, born in 1997, M. S. candidate. Her research interests include satellite communication, information-centric networking.
Supported by:
摘要:
基于信息中心网络(ICN)的近地轨道(LEO)超大规模卫星星座是一种支持物联网(IoT)非常理想的网络架构,而数据命名是ICN基本问题之一。针对IoT低时延传输、高吞吐量的数据分发的需要,提出了一种基于ICN的面向IoT的LEO超大规模卫星星座数据命名机制。首先,该数据命名机制采用一种融合分层、多分量、哈希的扁平一体结构。然后,采用前缀标记描述分层名称,满足网内功能中多源快速检索的需要。最后,为检验所提数据命名机制的性能,设计开发了一个基于网络仿真器3(NS-3)的面向IoT的LEO超大规模卫星星座仿真平台。测试仿真结果表明,与传统的基于互联网协议(IP)的体系结构相比,所提出的数据命名机制能够为面向IoT的LEO超大规模卫星星座提供高吞吐量和低延时等更高的服务质量(QoS)。
中图分类号:
罗鸿秋, 胡圣波. 面向物联网的近地轨道超大规模卫星星座数据命名机制[J]. 计算机应用, 2022, 42(7): 2146-2154.
Hongqiu LUO, Shengbo HU. Data naming mechanism of low earth orbit satellite mega-constellation for internet of things[J]. Journal of Computer Applications, 2022, 42(7): 2146-2154.
星座 | 轨道高度/km | 卫星颗数 | 对地覆盖范围 |
---|---|---|---|
Iridium | 780 | 66 | 全球范围 |
SpaceX | 1 200 | 4 425 | 全球范围 |
Amazon | 590~630 | 3 236 | 全球范围 |
OneWeb | 1 200 | 720 | 全球范围 |
鸿云 | 1 000 | 156 | 全球范围 |
鸿雁 | ~2 000 | 300 | 全球范围 |
表1 不同星座技术参数
Tab. 1 Technical parameters of different constellations
星座 | 轨道高度/km | 卫星颗数 | 对地覆盖范围 |
---|---|---|---|
Iridium | 780 | 66 | 全球范围 |
SpaceX | 1 200 | 4 425 | 全球范围 |
Amazon | 590~630 | 3 236 | 全球范围 |
OneWeb | 1 200 | 720 | 全球范围 |
鸿云 | 1 000 | 156 | 全球范围 |
鸿雁 | ~2 000 | 300 | 全球范围 |
含义 | 变量 | 值 | 注解 |
---|---|---|---|
半长轴 | 7 159.14 | 地球半径+轨道高度 | |
偏心率 | 0 | 圆形轨道 | |
升交点赤经 | 0,31.80,63.60,95.41,127.21,159.01 | 6轨道面 | |
倾角 | 86 | — | |
近地点幅角 | 0 | 圆形轨道 | |
真近点角 | 0,32.73,65.45,98.18,130.91,163.64,196.36,229.09,261.82,294.55,327.29 | 11颗卫星均匀分布在奇轨道面 | |
16.36,49.09,81.82,114.55,147.27,180,212.73,245.45,278.18,310.91,343.64 | 11颗卫星均匀分布在偶轨道面 |
表2 Iridium星座卫星轨道根数
Tab. 2 Satellite orbital elements of Iridium constellation
含义 | 变量 | 值 | 注解 |
---|---|---|---|
半长轴 | 7 159.14 | 地球半径+轨道高度 | |
偏心率 | 0 | 圆形轨道 | |
升交点赤经 | 0,31.80,63.60,95.41,127.21,159.01 | 6轨道面 | |
倾角 | 86 | — | |
近地点幅角 | 0 | 圆形轨道 | |
真近点角 | 0,32.73,65.45,98.18,130.91,163.64,196.36,229.09,261.82,294.55,327.29 | 11颗卫星均匀分布在奇轨道面 | |
16.36,49.09,81.82,114.55,147.27,180,212.73,245.45,278.18,310.91,343.64 | 11颗卫星均匀分布在偶轨道面 |
数据内容名称 | 分块序号 | 源节点信息 |
---|---|---|
/Data/Prefix1/Vedio/20210322/ | 2 | B |
1 | C | |
/Data/Prefix1/Data/20210420/ | 3 | C |
5 | B | |
2 | D | |
/Data/Prefix1/Voice/20210421/ | 3 | A |
… | … | … |
表3 发布信息汇总
Tab. 3 Summary of published information
数据内容名称 | 分块序号 | 源节点信息 |
---|---|---|
/Data/Prefix1/Vedio/20210322/ | 2 | B |
1 | C | |
/Data/Prefix1/Data/20210420/ | 3 | C |
5 | B | |
2 | D | |
/Data/Prefix1/Voice/20210421/ | 3 | A |
… | … | … |
1 | BACCO M, BOERO L, CASSARA P, et al. IoT applications and services in space information networks [J]. IEEE Wireless Communications, 2019, 26(2): 31-37. 10.1109/mwc.2019.1800297 |
2 | JAYOUSI S, MOROSI S, RONGA L S, et al. Flexible cubesat-based system for data broadcasting [J]. IEEE Aerospace and Electronic Systems Magazine, 2018, 33(5/6): 56-65. 10.1109/maes.2018.170115 |
3 | YOU X H, WANG C X, HUANG J, et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts [J]. SCIENCE CHINA Information Sciences, 2021, 64(1): Article No.110301. 10.1007/s11432-020-2955-6 |
4 | 胡圣波,朱满琴,杨露露,等.未来无线通信与大数据、人工智能[J].贵州师范大学学报(自然科学版),2020,38(6):1-10. |
HU S B, ZHU M Q, YANG L L, et al. Future wireless communication, big data and AI [J]. Journal of Guizhou Normal University (Natural Sciences), 2020, 38(6): 1-10. | |
5 | GUIDOTTI A, VANELLI-CORALLI A, CONTI M, et al. Architectures and key technical challenges for 5G systems incorporating satellites [J]. IEEE Transactions on Vehicular Technology, 2019, 68(3):2624-2639. 10.1109/tvt.2019.2895263 |
6 | LEYVA-MAYORGA I, SORET B, RÖPER M, et al. LEO small-satellite constellations for 5G and beyond-5G communications [J]. IEEE Access, 2020, 8: 184955-184964. 10.1109/access.2020.3029620 |
7 | KODHELI O, GUIDOTTI A, VANELLI-CORALLI A. Integration of satellites in 5G through LEO constellations [C]// Proceedings of the 2017 IEEE Global Communications Conference. Piscataway: IEEE, 2017: 1-6. 10.1109/glocom.2017.8255103 |
8 | DEL PORTILLO I, CAMERON B G, CRAWLEY E F. A technical comparison of three low earth orbit satellite constellation systems to provide global broadband [J]. Acta Astronautica, 2019, 159: 123-135. 10.1016/j.actaastro.2019.03.040 |
9 | FRAIRE J A, CÉSPEDES S, ACCETTURA N. Direct-to-satellite IoT — a survey of the state of the art and future research perspectives: backhauling the IoT through LEO satellites [C]// Proceedings of the 2019 International Conference on Ad-Hoc Networks and Wireless, LNCS 11803. Cham: Springer, 2019: 241-258. |
10 | QU Z C, ZHANG G X, CAO H T, et al. LEO satellite constellation for internet of things [J]. IEEE Access, 2017, 5: 18391-18401. 10.1109/access.2017.2735988 |
11 | WANG Z, CUI G F, LI P X, et al. Design and implementation of NS3-based simulation system of LEO satellite constellation for IoTs [C]// Proceedings of the 2018 IEEE 4th International Conference on Computer and Communications. Piscataway: IEEE, 2018: 806-810. 10.1109/compcomm.2018.8781066 |
12 | ARSHAD S, AZAM M A, REHMANI M H, et al. Recent advances in Information-Centric Networking based on Internet of Things (ICN-IoT) [J]. IEEE Internet of Things Journal, 2019, 6(2): 2128-2158. 10.1109/jiot.2018.2873343 |
13 | MEDDEB M, DHRAIEF A, BELGHITH A, et al. How to cache in ICN-based IoT environments? [C]// Proceedings of the 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications. Piscataway: IEEE, 2017: 1117-1124. 10.1109/aiccsa.2017.37 |
14 | SHANG W T, YU Y D, DROMS R, et al. Challenges in IoT networking via TCP/IP architecture: NDN-0038 [R/OL]. [2021-03-26]. . |
15 | BORGIA E. The internet of things vision: key features, applications and open issues [J]. Computer Communications, 2014, 54:1-31. 10.1016/j.comcom.2014.09.008 |
16 | STANKOVIC J A. Research directions for the internet of things [J]. IEEE Internet of Things Journal, 2014, 1(1): 3-9. 10.1109/jiot.2014.2312291 |
17 | RAVINDRAN R, SUTHAR P, CHAKRABORTI A, et al. Deploying ICN in 3GPP’s 5G NextGen core architecture [C]// Proceedings of the 2018 IEEE 5G World Forum. Piscataway: IEEE, 2018: 26-32. 10.1109/5gwf.2018.8517046 |
18 | NOUR B, SHARIF K, LI F, et al. A unified hybrid information-centric naming scheme for IoT applications [J]. Computer Communications, 2020, 150: 103-114. 10.1016/j.comcom.2019.11.020 |
19 | RAVINDRAN R, CHAKRABORTI A, AMIN S O, et al. 5G-ICN: delivering ICN services over 5G using network slicing [J]. IEEE Communications Magazine, 2017, 55(5): 101-107. 10.1109/mcom.2017.1600938 |
20 | CUI L Q, DONG M X, OTA K, et al. NSTN: name-based smart tracking for network status in information-centric internet of things [C]// Proceedings of the 2019 IEEE International Conference on Communications. Piscataway: IEEE, 2019: 1-6. 10.1109/icc.2019.8761289 |
21 | ZHANG L X, ESTRIN D, BURKE J, et al. Named Data Networking (NDN) project: NDN-0001 [R/OL]. [2021-03-26]. |
22 | ZHANG L X, AFANASYEV A, BURKE J, et al. Named data networking [J]. ACM SIGCOMM Computer Communication Review, 2014, 44(3): 66-73. 10.1145/2656877.2656887 |
23 | ZHANG Y, AFANASYEV A, BURKE J, et al. A survey of mobility support in named data networking [C]// Proceedings of the 2016 IEEE Conference on Computer Communications Workshops. Piscataway: IEEE, 2016: 83-88. 10.1109/infcomw.2016.7562050 |
24 | VASILAKOS A V, LI Z, SIMON G, et al. Information centric network: research challenges and opportunities [J]. Journal of Network and Computer Applications, 2015, 52: 1-10. 10.1016/j.jnca.2015.02.001 |
25 | ADHATARAO S S, CHEN J C, ARUMAITHURAI M, et al. Comparison of naming schema in ICN [C]// Proceedings of the 2016 IEEE International Symposium on Local and Metropolitan Area Networks. Piscataway: IEEE, 2016: 1-6. 10.1109/lanman.2016.7548856 |
26 | BOUK S H, AHMED S H, KIM D. Hierarchical and hash-based naming scheme for vehicular information centric networks [C]// Proceedings of the 2014 International Conference on Connected Vehicles and Expo. Piscataway: IEEE, 2014: 765-766. 10.1109/iccve.2014.7297653 |
27 | 陈荣伶,王玉皞,刘祎,等.基于标签分组的RFID防碰撞算法[J].计算机应用,2013,33(8):2132-2135. 10.3724/sp.j.1087.2013.02132 |
CHEN R L, WANG Y H, LIU Y, et al. RFID anti-collision algorithm based on tags grouping [J]. Journal of Computer Applications, 2013, 33(8): 2132-2135. 10.3724/sp.j.1087.2013.02132 | |
28 | RAZZAQUE M A, MILOJEVIC-JEVRIC M, PALADE A, et al. Middleware for internet of things: a survey [J]. IEEE Internet of Things Journal, 2016, 3(1): 70-95. 10.1109/jiot.2015.2498900 |
29 | WANT R, SCHILIT B N, JENSON S. Enabling the internet of things [J]. Computer, 2015, 48(1): 28-35. 10.1109/mc.2015.12 |
30 | SKOUBY K E, LYNGGAARD P. Smart home and smart city solutions enabled by 5G, IoT, AAI and CoT services [C]// Proceedings of the 2014 International Conference on Contemporary Computing and Informatics. Piscataway: IEEE, 2014: 874-878. 10.1109/ic3i.2014.7019822 |
31 | RAMREKHA T A, ADIGUN O, LADAS A, et al. Towards a scalable routing approach for mobile ad-hoc networks [C]// Proceedings of the 2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks. Piscataway: IEEE, 2015: 261-266. 10.1109/camad.2015.7390521 |
32 | DE SANCTIS M, CIANCA E, ARANITI G, et al. Satellite communications supporting internet of remote things [J]. IEEE Internet of Things Journal, 2016, 3(1): 113-123. 10.1109/jiot.2015.2487046 |
33 | HUO Y J, TU W, SHENG Z G, et al. A survey of in-vehicle communications: requirements, solutions and opportunities in IoT [C]// Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things. Piscataway: IEEE, 2015: 132-137. 10.1109/wf-iot.2015.7389040 |
34 | BOTTA A, DE DONATO W, PERSICO V, et al. On the integration of cloud computing and internet of things [C]// Proceedings of the 2014 International Conference on Future Internet of Things and Cloud. Piscataway: IEEE, 2014: 23-30. 10.1109/ficloud.2014.14 |
35 | LUTZ E, WERNER M, JAHN A. Satellite orbits, constellations, and system concepts [M]// Satellite Systems for Personal and Broadband Communications. Berlin: Springer, 2000: 15-46. 10.1007/978-3-642-59727-5_2 |
36 | WOOD L. SaVi: satellite constellation visualization [EB/OL]. [2021-04-20]. . 10.1007/978-1-4615-0431-3_2 |
37 | LONG F. Satellite network constellation designs [M]// Satellite Network Robust QoS-aware Routing. Berlin: Springer, 2014: 21-40. 10.1007/978-3-642-54353-1_2 |
38 | SAFITRI C, YAMADA Y, BAHARUN S, et al. An intelligent content prefix classification approach for quality of service optimization in information-centric networking [J]. Future Internet, 2018, 10(4): Article No.33. 10.3390/fi10040033 |
39 | NOUR B, SHARIF K, LI F, et al. A survey of internet of things communication using ICN: a use case perspective [J]. Computer Communications, 2019, 142/143: 95-123. 10.1016/j.comcom.2019.05.010 |
40 | 周勇奇.面向未来深空探测的信息中心网络关键技术研究[D].南京:南京大学,2019:41-50. 10.7498/aps.68.20190223 |
ZHOU Y Q. Research on key technologies of information centric networking for future deep space exploration [D]. Nanjing: Nanjing University, 2019: 41-50. 10.7498/aps.68.20190223 | |
41 | LYU J F, CHEN Y L, CAO Y. NDN-based multimedia content distribution in space-ground integration network [C]// Proceedings of the 2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops). Piscataway: IEEE, 2018: 69-74. 10.1109/iccchinaw.2018.8674504 |
42 | SMITH-ROSE R L. The speed of radio waves and its importance in some applications [J]. Proceedings of the IRE, 1950, 38(1): 16-20. 10.1109/jrproc.1950.232449 |
43 | 徐冀,嵩天,杨雅婷,等.多层卫星网络数据缓存技术研究[J].载人航天,2019,25(4):461-467. 10.3969/j.issn.1674-5825.2019.04.007 |
XU J, SONG T, YANG Y T, et al. Research on caching of multilayered satellite networks [J]. Manned Spaceflight, 2019, 25(4): 461-467. 10.3969/j.issn.1674-5825.2019.04.007 |
[1] | 陈姿芊, 牛科迪, 姚中原, 斯雪明. 适用于物联网的区块链轻量化技术综述[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3688-3698. |
[2] | 牛科迪, 李敏, 姚中原, 斯雪明. 面向物联网的区块链共识算法综述[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3678-3687. |
[3] | 万义程, 杨光祥, 张庆达, 甘晨阳, 易林. 非坚持型载波监听多路访问机制对LoRa网络扩展性的影响[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2885-2896. |
[4] | 门瑞, 樊书嘉, 阿喜达, 杜邵昱, 樊秀梅. 物联网中结合计算卸载和区块链的综述[J]. 《计算机应用》唯一官方网站, 2023, 43(10): 3008-3016. |
[5] | 孙源, 沈文建, 倪朋勃, 毛敏, 谢雅琪, 徐朝农. 实时工业物联网的功率域非正交多址接入基站选址算法[J]. 《计算机应用》唯一官方网站, 2023, 43(1): 209-214. |
[6] | 王旭, 申玉民, 熊晓芸, 李鹏, 王金龙. 基于哈希图的建筑物联网数据管理方法[J]. 《计算机应用》唯一官方网站, 2022, 42(8): 2471-2480. |
[7] | 张杰, 许姗姗, 袁凌云. 基于区块链与边缘计算的物联网访问控制模型[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2104-2111. |
[8] | 董宁, 程晓荣, 张铭泉. 基于物联网平台的动态权重损失函数入侵检测系统[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2118-2124. |
[9] | 刘晶, 董志红, 张喆语, 孙志刚, 季海鹏. 基于联邦增量学习的工业物联网数据共享方法[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1235-1243. |
[10] | 郑鑫, 李素月, 王安红, 李美玲, MUHAIDAT Sami, 宁爱平. 协作多输入多输出环境反向散射通信系统遍历速率分析[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 974-979. |
[11] | 马红桥, 杨文忠, 康鹏, 阳健康, 刘元山, 周越. 命名数据网络研究综述[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3111-3123. |
[12] | 包玉龙, 朱雪阳, 张文辉, 孙鹏飞, 赵颖琪. 物联网应用中访问控制智能合约的形式化验证[J]. 计算机应用, 2021, 41(4): 930-938. |
[13] | 田志宏, 赵金东. 面向物联网的区块链共识机制综述[J]. 《计算机应用》唯一官方网站, 2021, 41(4): 917-929. |
[14] | 张凌哲, 黄向东, 乔嘉林, 勾王敏浩, 王建民. 面向时序数据的两阶段日志结构合并树文件合并框架[J]. 计算机应用, 2021, 41(3): 618-622. |
[15] | 李秀艳, 刘明曦, 史闻博, 董国芳. 面向资源受限用户的高效动态数据审计方案[J]. 计算机应用, 2021, 41(2): 422-432. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||