1 |
LIU M, DING Y K, XIA M, et al. STGAN: a unified selective transfer network for arbitrary image attribute editing[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3668-3677. 10.1109/cvpr.2019.00379
|
2 |
LI T T, QIAN R H, DONG C, et al. BeautyGAN: instance-level facial makeup transfer with deep generative adversarial network[C]// Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 645-653. 10.1145/3240508.3240618
|
3 |
KLUM S, HANH, JAIN A K, et al. Sketch based face recognition: forensic vs. composite sketches[C]// Proceedings of the 2013 International Conference on Biometrics. Piscataway: IEEE, 2013: 1-8. 10.1109/icb.2013.6612993
|
4 |
陈佛计,朱枫,吴清潇,等. 生成对抗网络及其在图像生成中的应用研究综述[J]. 计算机学报, 2021, 44(2):347-369. 10.11897/SP.J.1016.2021.00347
|
|
CHEN F J, ZHU F, WU Q X, et al. A survey about image generation with generative adversarial nets[J]. Chinese Journal of Computers, 2021, 44(2): 347-369. 10.11897/SP.J.1016.2021.00347
|
5 |
ZHOU S C, XIAO T H, YANG Y, et al. GeneGAN: learning object transfiguration and attribute subspace from unpaired data[C]// Proceedings of the 2017 British Machine Vision Conference. Durham: BMVA Press, 2017: No.111. 10.5244/c.31.111
|
6 |
HE Z L, ZUO W M, KAN M N, et al. AttGAN: facial attribute editing by only changing what you want[J]. IEEE Transactions on Image Processing, 2019, 28(11): 5464-5478. 10.1109/tip.2019.2916751
|
7 |
MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL]. (2014-11-06) [2021-09-10]..
|
8 |
KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(12): 4217-4228. 10.1109/tpami.2020.2970919
|
9 |
KARRAS T, AILA T, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[EB/OL]. (2018-02-26) [2021-09-10]..
|
10 |
KARRAS T, LAINE S, AITTALA M, et al. Analyzing and improving the image quality of StyleGAN[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8107-8116. 10.1109/cvpr42600.2020.00813
|
11 |
HÄRKÖNEN E, HERTZMANN A, LEHTINEN J, et al. GANSpace: discovering interpretable GAN controls[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020:9841-9850.
|
12 |
胡铭菲,左信,刘建伟. 深度生成模型综述[J]. 自动化学报, 2022, 48(1): 40-74. 10.16383/j.aas.c190866
|
|
HU M F, ZUO X, LIU J W. Survey on deep generative model[J]. Acta Automatic Sinica, 2022, 48(1): 40-74. 10.16383/j.aas.c190866
|
13 |
GREGOR K, DANIHELKA I, GRAVES A, et al. DRAW: a recurrent neural network for image generation[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 1462-1471.
|
14 |
PAGNONIA, LIU K, LI S Y. Conditional variational autoencoder for neural machine translation[EB/OL]. (2018-12-11) [2021-09-10]..
|
15 |
BROCK A, DONAHUE J, SIMONYAN K. Large scale GAN training for high fidelity natural image synthesis[EB/OL]. (2019-02-25) [2021-09-10]..
|
16 |
SHOSHAN A, BHONKER N, KVIATKOVSKY I, et al. GAN-Control: explicitly controllable GANs[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 14063-14073. 10.1109/iccv48922.2021.01382
|
17 |
DENG Y, YANG J L, CHEN D, et al. Disentangled and controllable face image generation via 3D imitative-contrastive learning[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5153-5162. 10.1109/cvpr42600.2020.00520
|
18 |
郭茂祖,杨倩楠,赵玲玲. 基于条件Wassertein生成对抗网络的图像生成[J]. 计算机应用, 2021, 41(5):1432-1437. 10.11772/j.issn.1001-9081.2020071138
|
|
GUO M Z, YANG Q N, ZHAO L L. Image generation based on conditional-Wassertein generative adversarial network[J]. Journal of Computer Applications, 2021, 41(5): 1432-1437. 10.11772/j.issn.1001-9081.2020071138
|
19 |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 5769-5779.
|
20 |
CHEN X, DUAN Y, HOUTHOOFT R, et al. InfoGAN: interpretable representation learning by information maximizing generative adversarial nets[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 2180-2188.
|
21 |
ODENA A, OLAH C, SHLENS J. Conditional image synthesis with auxiliary classifier GANs[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 2642-2651.
|
22 |
YANG C Y, SHEN Y J, ZHOU B L. Semantic hierarchy emerges in deep generative representations for scene synthesis[J]. International Journal of Computer Vision, 2021, 129(5): 1451-1466. 10.1007/s11263-020-01429-5
|
23 |
SHEN Y J, YANG C Y, TANG X O, et al. InterFaceGAN: interpreting the disentangled face representation learned by GANs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 2004-2018. 10.1109/tpami.2020.3034267
|
24 |
UPCHURCH P, GARDNER J, PLEISS G, et al. Deep feature interpolation for image content changes[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6090-6099. 10.1109/cvpr.2017.645
|
25 |
SHEN Y J, ZHOU B L. Closed-form factorization of latent semantics in GANs[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1532-1540. 10.1109/cvpr46437.2021.00158
|
26 |
VOYNOV A, BABENKO A. Unsupervised discovery of interpretable directions in the GAN latent space[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 9786-9796.
|
27 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90
|
28 |
LIU Z W, LUO P, WANG X G, et al. Deep learning face attributes in the wild[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 3730-3738. 10.1109/iccv.2015.425
|
29 |
SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 2234-2242.
|
30 |
HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6629-6640. 10.48550/arXiv.1706.08500
|
31 |
BIŃKOWSKI M, SUTHERLAND D J, ARBEL M, et al. Demystifying MMD GANs[EB/OL]. (2021-01-14) [2021-09-10]..
|