《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (7): 2015-2021.DOI: 10.11772/j.issn.1001-9081.2021040660
所属专题: 人工智能
收稿日期:
2021-04-25
修回日期:
2021-09-01
接受日期:
2021-09-07
发布日期:
2022-07-15
出版日期:
2022-07-10
通讯作者:
闫连山
作者简介:
韩亚茹(1995—),女,山东济南人,硕士研究生,主要研究方向:多媒体图像检索、人工智能、机器学习基金资助:
Yaru HAN1, Lianshan YAN2(), Tao YAO1
Received:
2021-04-25
Revised:
2021-09-01
Accepted:
2021-09-07
Online:
2022-07-15
Published:
2022-07-10
Contact:
Lianshan YAN
About author:
HAN Yaru, born in 1995, M. S. candidate. Her research interests include multimedia image retrieval, artificial intelligence, machine learning.Supported by:
摘要:
随着移动互联网技术的发展,图像数据的规模越来越大,大规模图像检索任务已经成为了一个紧要的问题。由于检索速度快和存储消耗低,哈希算法受到了研究者的广泛关注。基于深度学习的哈希算法要达到较好的检索性能,需要一定数量的高质量训练数据来训练模型。然而现存的哈希方法通常忽视了数据集存在数据类别非平衡的问题,而这可能会降低检索性能。针对上述问题,提出了一种基于元学习网络的深度哈希检索算法。所提算法可以直接从数据中自动学习加权函数。该加权函数是只有一个隐含层的多层感知机(MLP),在少量无偏差元数据的指导下,加权函数的参数可以和模型训练过程中的参数同时进行优化更新。元学习网络参数的更新方程可以解释为:较符合元学习数据的样本权重将被提高,而不符合元学习数据的样本权重将被减小。基于元学习网络的深度哈希检索算法可以有效减少非平衡数据对图像检索的影响,并可以提高模型的鲁棒性。在CIFAR-10等广泛使用的基准数据集上进行的大量实验表明,在非平衡比率较大时,所提算法的平均准确率均值(mAP)最佳;在非平均比率为200的条件下,所提算法的mAP比中心相似度量化算法、非对称深度监督哈希(ADSH)算法和快速可扩展监督哈希(FSSH)算法分别提高0.54个百分点,30.93个百分点和48.43个百分点。
中图分类号:
韩亚茹, 闫连山, 姚涛. 基于元学习的深度哈希检索算法[J]. 计算机应用, 2022, 42(7): 2015-2021.
Yaru HAN, Lianshan YAN, Tao YAO. Deep hashing retrieval algorithm based on meta-learning[J]. Journal of Computer Applications, 2022, 42(7): 2015-2021.
算法 | CIFAR-10 | CIFAR-100 | STL-10 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
16 bit | 32 bit | 48 bit | 64 bit | 16 bit | 32 bit | 48 bit | 64 bit | 16 bit | 32 bit | 48 bit | 64 bit | |
ADSH[ | 91.82 | 93.12 | 93.91 | 94.07 | 3.18 | 20.85 | 58.97 | 70.64 | 91.76 | 93.29 | 93.56 | 93.07 |
FSSH[ | 62.17 | 67.46 | 68.12 | 68.84 | 14.81 | 19.23 | 22.91 | 25.34 | 62.43 | 67.55 | 69.03 | 69.23 |
CSQ[ | 93.23 | 95.18 | 96.21 | 96.23 | 30.29 | 33.31 | 48.56 | 58.84 | 67.55 | 69.23 | 79.25 | 82.56 |
本文算法 | 93.51 | 93.45 | 93.72 | 93.92 | 70.51 | 74.32 | 78.42 | 79.13 | 92.25 | 92.85 | 93.13 | 94.65 |
表1 平衡数据集上4种码长的码的mAP@all (%)
Tab.1 mAP@all of four hash codes with different lengths on balanced datasets
算法 | CIFAR-10 | CIFAR-100 | STL-10 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
16 bit | 32 bit | 48 bit | 64 bit | 16 bit | 32 bit | 48 bit | 64 bit | 16 bit | 32 bit | 48 bit | 64 bit | |
ADSH[ | 91.82 | 93.12 | 93.91 | 94.07 | 3.18 | 20.85 | 58.97 | 70.64 | 91.76 | 93.29 | 93.56 | 93.07 |
FSSH[ | 62.17 | 67.46 | 68.12 | 68.84 | 14.81 | 19.23 | 22.91 | 25.34 | 62.43 | 67.55 | 69.03 | 69.23 |
CSQ[ | 93.23 | 95.18 | 96.21 | 96.23 | 30.29 | 33.31 | 48.56 | 58.84 | 67.55 | 69.23 | 79.25 | 82.56 |
本文算法 | 93.51 | 93.45 | 93.72 | 93.92 | 70.51 | 74.32 | 78.42 | 79.13 | 92.25 | 92.85 | 93.13 | 94.65 |
算法 | CIFAR-10 | CIFAE-100 | STL-10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
200 | 100 | 50 | 20 | 10 | 200 | 100 | 50 | 20 | 10 | 200 | 100 | 50 | 20 | 10 | |
ADSH[ | 39.74 | 38.87 | 51.91 | 74.72 | 92.91 | 23.44 | 24.12 | 24.94 | 27.58 | 30.11 | 56.16 | 60.99 | 80.05 | 92.24 | 94.68 |
FSSH[ | 22.24 | 45.37 | 46.52 | 53.55 | 58.76 | 12.92 | 13.79 | 14.47 | 15.85 | 16.72 | 41.76 | 45.06 | 48.54 | 53.42 | 59.93 |
CSQ[ | 70.13 | 76.98 | 77.25 | 86.68 | 89.14 | 13.52 | 15.66 | 26.22 | 27.83 | 28.19 | 57.23 | 62.14 | 73.16 | 79.86 | 85.17 |
本文算法 | 70.67 | 77.91 | 78.93 | 85.28 | 87.88 | 22.23 | 30.14 | 38.59 | 40.10 | 51.31 | 58.23 | 63.38 | 73.56 | 79.97 | 84.08 |
表2 非平衡数据集上32位码长的码的mAP@all (%)
Tab.2 mAP@all of 32 bit hash code on unbalanced datasets
算法 | CIFAR-10 | CIFAE-100 | STL-10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
200 | 100 | 50 | 20 | 10 | 200 | 100 | 50 | 20 | 10 | 200 | 100 | 50 | 20 | 10 | |
ADSH[ | 39.74 | 38.87 | 51.91 | 74.72 | 92.91 | 23.44 | 24.12 | 24.94 | 27.58 | 30.11 | 56.16 | 60.99 | 80.05 | 92.24 | 94.68 |
FSSH[ | 22.24 | 45.37 | 46.52 | 53.55 | 58.76 | 12.92 | 13.79 | 14.47 | 15.85 | 16.72 | 41.76 | 45.06 | 48.54 | 53.42 | 59.93 |
CSQ[ | 70.13 | 76.98 | 77.25 | 86.68 | 89.14 | 13.52 | 15.66 | 26.22 | 27.83 | 28.19 | 57.23 | 62.14 | 73.16 | 79.86 | 85.17 |
本文算法 | 70.67 | 77.91 | 78.93 | 85.28 | 87.88 | 22.23 | 30.14 | 38.59 | 40.10 | 51.31 | 58.23 | 63.38 | 73.56 | 79.97 | 84.08 |
1 | 张楚涵,张家侨,冯剑琳. AKNN-Qalsh: PostgreSQL系统高维空间近似最近邻检索插件[J]. 中山大学学报(自然科学版), 2019, 58(3): 79-85. |
ZHANG C H, ZHANG J Q, FENG J L. AKNN-Qalsh: an approximate KNN search extension for high-dimensional data in PostgreSQL[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(3):79-85. | |
2 | 陈诚,邹焕新,邵宁远,等. 面向遥感影像的深度语义哈希检索[J]. 中国图象图形学报, 2018, 24(4): 655-663. |
CHEN C, ZOU H X, SHAO N Y, et al. Deep semantic Hashing retrieval of remote sensing images[J]. Journal of Image and Graphics, 2019, 24(4): 655-663. | |
3 | DATAR M, IMMORLICA N, INDYK P, et al. Locality-sensitive hashing scheme based on p-stable distributions[C]// Proceedings of the 20th Annual Symposium on Computational Geometry. New York: ACM, 2004: 253-262. 10.1145/997817.997857 |
4 | 康松林,刘楚楚,樊晓平,等. WOS-ELM算法在入侵检测中的研究[J]. 小型微型计算机系统, 2015, 36(8): 1779-1783. 10.3969/j.issn.1000-1220.2015.08.022 |
KANG S L, LIU C C, FAN X P, et al. Research on intrusion detection based on WOS-ELM algorithm[J]. Journal of Chinese Computer Systems, 2015, 36(8): 1779-1783. 10.3969/j.issn.1000-1220.2015.08.022 | |
5 | ZIĘBA M, TOMCZAK S K, TOMCZAK J M. Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction[J]. Expert Systems with Applications, 2016, 58: 93-101. 10.1016/j.eswa.2016.04.001 |
6 | KHATAMI A, BABAIE M, KHOSRAVI A, et al. Parallel deep solutions for image retrieval from imbalanced medical imaging archives[J]. Applied Soft Computing, 2018, 63: 197-205. 10.1016/j.asoc.2017.11.024 |
7 | LAKE B M, SALAKHUTDINOV R, TENENBAUM J B. Human-level concept learning through probabilistic program induction[J]. Science, 2015, 350(6266): 1332-1338. 10.1126/science.aab3050 |
8 | FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1126-1135. |
9 | JIANG L, ZHOU Z Y, LEUNG T, et al. MentorNet: learning data-driven curriculum for very deep neural networks on corrupted labels[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 2304-2313. |
10 | WU L J, TIAN F, XIA Y C, et al. Learning to teach with dynamic loss functions[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 6467-6478. |
11 | WEISS Y, TORRALBA A, FERGUS R. Spectral hashing[C]// Proceedings of the 21st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2008: 1753-1760. |
12 | GONG Y C, LAZEBNIK S, GORDO A, et al. Iterative quantization a procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2916-2929. 10.1109/tpami.2012.193 |
13 | SHEN F M, XU Y, LIU L, et al. Unsupervised deep hashing with similarity-adaptive and discrete optimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12): 3034-3044. 10.1109/tpami.2018.2789887 |
14 | KULIS B, DARRELL T. Learning to hash with binary reconstructive embeddings[C]// Proceedings of the 22nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2009: 1042-1050. |
15 | LIU W, WANG J, JI R R, et al. Supervised hashing with kernels[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2074-2081. 10.1109/cvpr.2012.6247912 |
16 | SHEN F M, SHEN C H, LIU W, et al. Supervised discrete hashing[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 37-45. 10.1109/cvpr.2015.7298598 |
17 | YAO T, LONG F C, MEI T, et al. Deep semantic-preserving and ranking-based hashing for image retrieval[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2016: 3931-3937. |
18 | LIU H M, WANG R P, SHAN S G, et al. Deep supervised hashing for fast image retrieval[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2064-2072. 10.1109/cvpr.2016.227 |
19 | LI Q, SUN Z N, HE R, et al. Deep supervised discrete hashing[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 2479-2488. |
20 | DONG Q, GONG S G, ZHU X T. Class rectification hard mining for imbalanced deep learning[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1869-1878. 10.1109/iccv.2017.205 |
21 | LIU X Y, WU J X, ZHOU Z H. Exploratory undersampling for class-imbalance learning[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2009, 39(2): 539-550. 10.1109/tsmcb.2008.2007853 |
22 | MALDONADO S, MONTECINOS C. Robust classification of imbalanced data using one-class and two-class SVM-based multiclassifiers[J]. Intelligent Data Analysis, 2014, 18(1): 95-112. 10.3233/ida-130630 |
23 | ZHANG Z L, LUO X G, GARCÍA S, et al. Cost-sensitive back-propagation neural networks with binarization techniques in addressing multi-class problems and non-competent classifiers[J]. Applied Soft Computing, 2017, 56: 357-367. 10.1016/j.asoc.2017.03.016 |
24 | SUN Y, LI Z L, LI X W, et al. Classifier selection and ensemble model for multi-class imbalance learning in education grants prediction[J]. Applied Artificial Intelligence, 2021, 35(4): 290-303. 10.1080/08839514.2021.1877481 |
25 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2012: 1097-1105. |
26 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. 10.1109/cvpr.2014.81 |
27 | ZHEN Y, YEUNG D Y. A probabilistic model for multimodal hash function learning[C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 940-948. 10.1145/2339530.2339678 |
28 | LUO X, NIE L Q, HE X G, et al. Fast scalable supervised hashing[C]// Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2018: 735-744. 10.1145/3209978.3210035 |
29 | JIANG Q Y, LI W J. Asymmetric deep supervised hashing[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 3342-3349. 10.1609/aaai.v32i1.11814 |
30 | YUAN L, WANG T, ZHANG X P, et al. Central similarity quantization for efficient image and video retrieval [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3080-3089. 10.1109/cvpr42600.2020.00315 |
31 | WANG J, KUMAR S, CHANG S F. Semi-supervised hashing for large-scale search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(12): 2393-2406. 10.1109/tpami.2012.48 |
32 | GUI J, LIU T L, SUN Z N, et al. Fast supervised discrete hashing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(2): 490-496. 10.1109/tpami.2017.2678475 |
33 | HUANG C, LI Y N, LOY C C, et al. Learning deep representation for imbalanced classification[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 5375-5384. 10.1109/cvpr.2016.580 |
34 | ZHAO F, HUANG Y Z, WANG L, et al. Deep semantic ranking based hashing for multi-label image retrieval[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1556-1564. 10.1109/cvpr.2015.7298763 |
35 | YANG H F, LIN K, CHEN C S. Supervised learning of semantics-preserving hash via deep convolutional neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(2): 437-451. 10.1109/tpami.2017.2666812 |
36 | LI X, LIN G S, SHEN C H, et al. Learning hash functions using column generation[C]// Proceedings of the 30th International Conference on Machine Learning. New York: JMLR.org, 2013: 142-150. |
37 | ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8689. Cham: Springer, 2014: 818-833. |
38 | OQUAB M, BOTTOU L, LAPTEV I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 1717-1724. 10.1109/cvpr.2014.222 |
39 | WANG J D, ZHANG T, SONG J K, et al. A survey on learning to hash[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 769-790. 10.1109/tpami.2017.2699960 |
40 | LAI H J, PAN Y, LIU Y, et al. Simultaneous feature learning and hash coding with deep neural networks[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3270-3278. 10.1109/cvpr.2015.7298947 |
41 | SHU J, XIE Q, YI L X, et al. Meta-weight-net: learning an explicit mapping for sample weighting[C/OL]// Proceedings of the 2019 Conference and Workshop on Neural Information Processing Systems. [2021-02-21].. |
42 | LIN K, YANG H F, HSIAO J H, et al. Deep learning of binary hash codes for fast image retrieval[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 27-35. 10.1109/cvprw.2015.7301269 |
43 | LU X Q, ZHENG X T, LI X L. Latent semantic minimal hashing for image retrieval[J]. IEEE Transactions on Image Processing, 2017, 26(1): 355-368. 10.1109/tip.2016.2627801 |
44 | LIN K, LU J W, CHEN C S, et al. Learning compact binary descriptors with unsupervised deep neural networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1183-1192. 10.1109/cvpr.2016.133 |
45 | NI B B, YAN S C, KASSIM A. Learning a propagable graph for semisupervised learning: classification and regression[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(1): 114-126. 10.1109/tkde.2010.209 |
46 | 柯圣财,赵永威,李弼程,等. 基于卷积神经网络和监督核哈希的图像检索方法[J]. 电子学报, 2017, 45(1):157-163. 10.3969/j.issn.0372-2112.2017.01.022 |
KE S C, ZHAO Y W, LI B C, et al. Image retrieval based on convolutional neural network and kernel-based supervised Hashing[J]. Acta Electronica Sinica, 2017, 45(1): 157-163. 10.3969/j.issn.0372-2112.2017.01.022 | |
47 | 王珊,王会举,覃雄派,等. 架构大数据:挑战、现状与展望[J]. 计算机学报, 2011, 34(10): 1741-1752. 10.3724/sp.j.1016.2011.01741 |
WANG S, WANG H J, QIN X P, et al. Architecting big data: challenges, studies and forecasts[J]. Chinese Journal of Computers, 2011, 34(10): 1741-1752. 10.3724/sp.j.1016.2011.01741 | |
48 | 艾列富,于俊清,管涛,等. 大规模图像特征检索中查询结果的自适应过滤[J]. 计算机学报, 2015, 38(1): 122-132. |
AI L F, YU J Q, GUAN T, et al. Adaptively filtering query results for large scale image feature retrieval[J]. Chinese Journal of Computers, 2015, 38(1): 122-132. | |
49 | CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. 10.1613/jair.953 |
[1] | 潘烨新, 杨哲. 基于多级特征双向融合的小目标检测优化模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2871-2877. |
[2] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. |
[3] | 李顺勇, 李师毅, 胥瑞, 赵兴旺. 基于自注意力融合的不完整多视图聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2696-2703. |
[4] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[5] | 王熙源, 张战成, 徐少康, 张宝成, 罗晓清, 胡伏原. 面向手术导航3D/2D配准的无监督跨域迁移网络[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2911-2918. |
[6] | 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2551-2557. |
[7] | 顾焰杰, 张英俊, 刘晓倩, 周围, 孙威. 基于时空多图融合的交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2618-2625. |
[8] | 石乾宏, 杨燕, 江永全, 欧阳小草, 范武波, 陈强, 姜涛, 李媛. 面向空气质量预测的多粒度突变拟合网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2643-2650. |
[9] | 吴筝, 程志友, 汪真天, 汪传建, 王胜, 许辉. 基于深度学习的患者麻醉复苏过程中的头部运动幅度分类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2258-2263. |
[10] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. |
[11] | 张郅, 李欣, 叶乃夫, 胡凯茜. 基于暗知识保护的模型窃取防御技术DKP[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2080-2086. |
[12] | 赵亦群, 张志禹, 董雪. 基于密集残差物理信息神经网络的各向异性旅行时计算方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2310-2318. |
[13] | 徐松, 张文博, 王一帆. 基于时空信息的轻量视频显著性目标检测网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2192-2199. |
[14] | 孙逊, 冯睿锋, 陈彦如. 基于深度与实例分割融合的单目3D目标检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2208-2215. |
[15] | 赵雅娟, 孟繁军, 徐行健. 在线教育学习者知识追踪综述[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1683-1698. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||