《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (10): 3178-3187.DOI: 10.11772/j.issn.1001-9081.2022091453
所属专题: 先进计算
收稿日期:
2022-09-30
修回日期:
2022-11-17
接受日期:
2022-11-21
发布日期:
2023-02-16
出版日期:
2023-10-10
通讯作者:
李二超
作者简介:
张生辉(1997—),男,甘肃武威人,硕士研究生,主要研究方向:动态多目标优化。
基金资助:
Received:
2022-09-30
Revised:
2022-11-17
Accepted:
2022-11-21
Online:
2023-02-16
Published:
2023-10-10
Contact:
Erchao LI
About author:
ZHANG Shenghui, born in 1997, M. S. candidate. His research interests include dynamic multi-objective optimization.
Supported by:
摘要:
现实生活中的多目标优化问题(MOP)大多为动态多目标优化问题(DMOP),此类问题的目标函数、约束条件和决策变量都可能随时间的变化而发生改变,这需要算法在环境变化后快速适应新的环境,且在保证Pareto解集多样性的同时快速收敛到新的Pareto前沿。针对此问题,提出一种基于新评价指标自适应预测的动态多目标优化算法(NEI-APDMOA)。首先,在种群非支配排序过程中提出一种优于拥挤度的新评价指标,并分阶段平衡收敛快速性和种群多样性,使种群的收敛过程更加合理;其次,提出一种可判断环境变化强弱的因子,为预测阶段提供有价值信息,并引导种群更好地适应环境变化;最后,根据环境变化因子匹配3种更加合理的预测策略,使种群快速响应环境变化。将NEI-APDMOA与DNSGA-Ⅱ-A(Dynamic Non-dominated Sorting Genetic Algorithm-Ⅱ-A)、DNSGA-Ⅱ-B(Dynamic Non-dominated Sorting Genetic Algorithm-Ⅱ-B)和PPS(Population Prediction Strategy)算法在9个标准动态测试函数上进行对比。实验结果表明,NEI-APDMOA分别在9、4和8个测试函数上取得了最优的平均反世代距离(IGD)值、平均间距(SP)值和平均世代距离(GD)值,可以更快地响应环境变化。
中图分类号:
李二超, 张生辉. 基于新评价指标自适应预测的动态多目标优化算法[J]. 计算机应用, 2023, 43(10): 3178-3187.
Erchao LI, Shenghui ZHANG. Dynamic multi-objective optimization algorithm based on adaptive prediction of new evaluation index[J]. Journal of Computer Applications, 2023, 43(10): 3178-3187.
( | 初期 | 后期 | ||
---|---|---|---|---|
平均IGD | 平均SP | 平均IGD | 平均SP | |
(1,0.05) | 0.572 9 | 0.145 3 | 0.177 0 | 0.194 1 |
(1,0.15) | 0.689 3 | 0.127 0 | 0.220 9 | 0.157 4 |
(1,0.25) | 0.752 1 | 0.106 8 | 0.324 3 | 0.181 1 |
表1 不同度量权重时的平均IGD、SP值
Tab. 1 Average IGD and SP values at different metric weights
( | 初期 | 后期 | ||
---|---|---|---|---|
平均IGD | 平均SP | 平均IGD | 平均SP | |
(1,0.05) | 0.572 9 | 0.145 3 | 0.177 0 | 0.194 1 |
(1,0.15) | 0.689 3 | 0.127 0 | 0.220 9 | 0.157 4 |
(1,0.25) | 0.752 1 | 0.106 8 | 0.324 3 | 0.181 1 |
测试函数 | DNSGA-Ⅱ-A | DNSGA-Ⅱ-B | PPS | NEI-APDMOA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | |
共计 | 6-/3~/0+ | 7-/2~/0+ | 9-/0~/0+ | ||||||||
FDA1 | 1.48E-01 | 8.51E-03 | - | 1.43E-01 | 9.89E-03 | - | 2.10E-01 | 1.73E-02 | - | 1.10E-01 | 8.05E-03 |
FDA2 | 5.24E-02 | 4.38E-03 | - | 5.16E-02 | 3.97E-03 | - | 7.80E-02 | 1.69E-03 | - | 1.99E-02 | 2.92E-03 |
FDA3 | 1.38E-01 | 9.46E-03 | - | 1.39E-01 | 1.26E-02 | - | 2.07E-01 | 2.53E-02 | - | 1.19E-01 | 8.44E-03 |
FDA4 | 6.65E-02 | 1.76E-03 | - | 6.23E-02 | 2.29E-03 | - | 8.61E-02 | 4.92E-03 | - | 6.03E-02 | 9.78E-04 |
FDA5 | 3.33E-02 | 1.84E-03 | ~ | 3.28E-02 | 7.41E-04 | ~ | 4.39E-02 | 2.42E-03 | - | 3.26E-02 | 6.74E-04 |
DMOP1 | 9.07E-02 | 1.74E-02 | - | 8.27E-02 | 1.89E-02 | - | 1.22E-01 | 2.90E-02 | - | 6.20E-02 | 5.54E-03 |
DMOP2 | 6.61E-02 | 3.36E-03 | ~ | 6.99E-02 | 5.48E-03 | - | 9.05E-02 | 9.85E-03 | - | 6.34E-02 | 5.14E-03 |
DTLZ1 | 2.52E-02 | 2.92E-04 | ~ | 2.57E-02 | 4.83E-04 | ~ | 2.58E-02 | 7.63E-04 | - | 2.51E-02 | 2.02E-04 |
DTLZ2 | 4.00E-02 | 1.62E-04 | - | 3.96E-02 | 8.57E-04 | - | 4.69E-02 | 3.08E-04 | - | 3.82E-02 | 7.87E-04 |
表2 四种算法的平均IGD值统计
Tab. 2 Average IGD value statistics of four algorithms
测试函数 | DNSGA-Ⅱ-A | DNSGA-Ⅱ-B | PPS | NEI-APDMOA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | |
共计 | 6-/3~/0+ | 7-/2~/0+ | 9-/0~/0+ | ||||||||
FDA1 | 1.48E-01 | 8.51E-03 | - | 1.43E-01 | 9.89E-03 | - | 2.10E-01 | 1.73E-02 | - | 1.10E-01 | 8.05E-03 |
FDA2 | 5.24E-02 | 4.38E-03 | - | 5.16E-02 | 3.97E-03 | - | 7.80E-02 | 1.69E-03 | - | 1.99E-02 | 2.92E-03 |
FDA3 | 1.38E-01 | 9.46E-03 | - | 1.39E-01 | 1.26E-02 | - | 2.07E-01 | 2.53E-02 | - | 1.19E-01 | 8.44E-03 |
FDA4 | 6.65E-02 | 1.76E-03 | - | 6.23E-02 | 2.29E-03 | - | 8.61E-02 | 4.92E-03 | - | 6.03E-02 | 9.78E-04 |
FDA5 | 3.33E-02 | 1.84E-03 | ~ | 3.28E-02 | 7.41E-04 | ~ | 4.39E-02 | 2.42E-03 | - | 3.26E-02 | 6.74E-04 |
DMOP1 | 9.07E-02 | 1.74E-02 | - | 8.27E-02 | 1.89E-02 | - | 1.22E-01 | 2.90E-02 | - | 6.20E-02 | 5.54E-03 |
DMOP2 | 6.61E-02 | 3.36E-03 | ~ | 6.99E-02 | 5.48E-03 | - | 9.05E-02 | 9.85E-03 | - | 6.34E-02 | 5.14E-03 |
DTLZ1 | 2.52E-02 | 2.92E-04 | ~ | 2.57E-02 | 4.83E-04 | ~ | 2.58E-02 | 7.63E-04 | - | 2.51E-02 | 2.02E-04 |
DTLZ2 | 4.00E-02 | 1.62E-04 | - | 3.96E-02 | 8.57E-04 | - | 4.69E-02 | 3.08E-04 | - | 3.82E-02 | 7.87E-04 |
测试函数 | DNSGA-Ⅱ-A | DNSGA-Ⅱ-B | PPS | NEI-APDMOA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | |
共计 | 2-/4~/3+ | 2-/5~/2+ | 2-/3~/4+ | ||||||||
FDA1 | 1.80E-01 | 2.01E-02 | ~ | 1.85E-01 | 2.33E-02 | ~ | 1.91E-01 | 2.30E-02 | ~ | 1.76E-01 | 1.94E-02 |
FDA2 | 7.42E-01 | 2.14E-02 | + | 7.43E-01 | 1.71E-02 | + | 5.27E-01 | 4.53E-02 | + | 3.11E+00 | 1.69E-01 |
FDA3 | 1.59E-01 | 1.73E-02 | ~ | 1.61E-01 | 1.49E-02 | ~ | 1.31E-01 | 1.31E-01 | + | 1.53E-01 | 8.18E-03 |
FDA4 | 3.14E-01 | 1.56E-02 | + | 3.18E-01 | 2.40E-02 | ~ | 2.97E-01 | 2.20E-02 | + | 3.28E-01 | 1.20E-02 |
FDA5 | 3.84E-01 | 1.72E-02 | + | 3.83E-01 | 1.40E-02 | + | 4.02E-01 | 2.67E-02 | + | 1.02E+00 | 1.59E-01 |
DMOP1 | 3.48E-01 | 3.74E-02 | - | 3.61E-01 | 4.69E-02 | - | 4.79E-01 | 5.93E-02 | - | 2.90E-01 | 2.16E-02 |
DMOP2 | 3.42E-01 | 2.51E-02 | - | 3.45E-01 | 1.40E-02 | - | 3.57E-01 | 1.52E-02 | - | 2.87E-01 | 3.12E-02 |
DTLZ1 | 6.49E-01 | 1.78E-02 | ~ | 6.54E-01 | 1.74E-02 | ~ | 6.78E-01 | 2.02E-02 | ~ | 6.39E-01 | 8.52E-03 |
DTLZ2 | 7.63E-01 | 2.49E-02 | ~ | 7.61E-01 | 2.13E-02 | ~ | 7.72E-01 | 2.11E-02 | ~ | 7.66E-01 | 2.60E-03 |
表3 四种算法的平均SP值统计
Tab. 3 Average SP value statistics of four algorithms
测试函数 | DNSGA-Ⅱ-A | DNSGA-Ⅱ-B | PPS | NEI-APDMOA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | |
共计 | 2-/4~/3+ | 2-/5~/2+ | 2-/3~/4+ | ||||||||
FDA1 | 1.80E-01 | 2.01E-02 | ~ | 1.85E-01 | 2.33E-02 | ~ | 1.91E-01 | 2.30E-02 | ~ | 1.76E-01 | 1.94E-02 |
FDA2 | 7.42E-01 | 2.14E-02 | + | 7.43E-01 | 1.71E-02 | + | 5.27E-01 | 4.53E-02 | + | 3.11E+00 | 1.69E-01 |
FDA3 | 1.59E-01 | 1.73E-02 | ~ | 1.61E-01 | 1.49E-02 | ~ | 1.31E-01 | 1.31E-01 | + | 1.53E-01 | 8.18E-03 |
FDA4 | 3.14E-01 | 1.56E-02 | + | 3.18E-01 | 2.40E-02 | ~ | 2.97E-01 | 2.20E-02 | + | 3.28E-01 | 1.20E-02 |
FDA5 | 3.84E-01 | 1.72E-02 | + | 3.83E-01 | 1.40E-02 | + | 4.02E-01 | 2.67E-02 | + | 1.02E+00 | 1.59E-01 |
DMOP1 | 3.48E-01 | 3.74E-02 | - | 3.61E-01 | 4.69E-02 | - | 4.79E-01 | 5.93E-02 | - | 2.90E-01 | 2.16E-02 |
DMOP2 | 3.42E-01 | 2.51E-02 | - | 3.45E-01 | 1.40E-02 | - | 3.57E-01 | 1.52E-02 | - | 2.87E-01 | 3.12E-02 |
DTLZ1 | 6.49E-01 | 1.78E-02 | ~ | 6.54E-01 | 1.74E-02 | ~ | 6.78E-01 | 2.02E-02 | ~ | 6.39E-01 | 8.52E-03 |
DTLZ2 | 7.63E-01 | 2.49E-02 | ~ | 7.61E-01 | 2.13E-02 | ~ | 7.72E-01 | 2.11E-02 | ~ | 7.66E-01 | 2.60E-03 |
测试函数 | DNSGA-Ⅱ-A | DNSGA-Ⅱ-B | PPS | NEI-APDMOA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | |
共计 | 7-/1~/1+ | 7-/1~/1+ | 7-/2~/0+ | ||||||||
FDA1 | 1.14E-02 | 7.64E-04 | - | 1.08E-02 | 7.33E-04 | - | 1.65E-02 | 1.88E-03 | - | 8.89E-03 | 2.68E-03 |
FDA2 | 1.32E-03 | 7.36E-05 | + | 1.35E-03 | 8.25E-05 | + | 2.17E-03 | 3.75E-04 | ~ | 2.39E-03 | 1.39E-04 |
FDA3 | 1.21E-02 | 9.32E-04 | - | 1.18E-02 | 1.13E-03 | - | 2.00E-02 | 3.07E-03 | - | 1.02E-02 | 3.32E-04 |
FDA4 | 6.29E-03 | 1.59E-04 | - | 5.96E-03 | 1.99E-04 | - | 1.37E-02 | 1.32E-03 | - | 5.65E-03 | 3.17E-04 |
FDA5 | 5.52E-03 | 2.82E-04 | - | 5.42E-03 | 2.07E-04 | - | 8.08E-03 | 6.77E-04 | - | 4.93E-03 | 2.08E-04 |
DMOP1 | 1.62E-02 | 1.88E-03 | - | 1.49E-02 | 1.81E-03 | - | 1.80E-02 | 2.25E-03 | - | 9.74E-03 | 4.51E-04 |
DMOP2 | 7.02E-03 | 2.67E-04 | - | 7.08E-03 | 4.13E-04 | - | 9.37E-03 | 8.52E-04 | - | 6.10E-03 | 1.41E-04 |
DTLZ1 | 3.21E-03 | 1.18E-04 | - | 3.26E-03 | 1.56E-04 | - | 3.79E-03 | 9.07E-05 | - | 2.84E-03 | 1.03E-04 |
DTLZ2 | 9.35E-03 | 4.55E-04 | ~ | 9.27E-03 | 2.43E-04 | ~ | 1.14E-02 | 7.19E-04 | ~ | 9.20E-03 | 7.58E-05 |
表4 四种算法的平均GD值统计
Tab. 4 Average GD value statistics of four algorithms
测试函数 | DNSGA-Ⅱ-A | DNSGA-Ⅱ-B | PPS | NEI-APDMOA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | 性能 | 平均值 | 方差 | |
共计 | 7-/1~/1+ | 7-/1~/1+ | 7-/2~/0+ | ||||||||
FDA1 | 1.14E-02 | 7.64E-04 | - | 1.08E-02 | 7.33E-04 | - | 1.65E-02 | 1.88E-03 | - | 8.89E-03 | 2.68E-03 |
FDA2 | 1.32E-03 | 7.36E-05 | + | 1.35E-03 | 8.25E-05 | + | 2.17E-03 | 3.75E-04 | ~ | 2.39E-03 | 1.39E-04 |
FDA3 | 1.21E-02 | 9.32E-04 | - | 1.18E-02 | 1.13E-03 | - | 2.00E-02 | 3.07E-03 | - | 1.02E-02 | 3.32E-04 |
FDA4 | 6.29E-03 | 1.59E-04 | - | 5.96E-03 | 1.99E-04 | - | 1.37E-02 | 1.32E-03 | - | 5.65E-03 | 3.17E-04 |
FDA5 | 5.52E-03 | 2.82E-04 | - | 5.42E-03 | 2.07E-04 | - | 8.08E-03 | 6.77E-04 | - | 4.93E-03 | 2.08E-04 |
DMOP1 | 1.62E-02 | 1.88E-03 | - | 1.49E-02 | 1.81E-03 | - | 1.80E-02 | 2.25E-03 | - | 9.74E-03 | 4.51E-04 |
DMOP2 | 7.02E-03 | 2.67E-04 | - | 7.08E-03 | 4.13E-04 | - | 9.37E-03 | 8.52E-04 | - | 6.10E-03 | 1.41E-04 |
DTLZ1 | 3.21E-03 | 1.18E-04 | - | 3.26E-03 | 1.56E-04 | - | 3.79E-03 | 9.07E-05 | - | 2.84E-03 | 1.03E-04 |
DTLZ2 | 9.35E-03 | 4.55E-04 | ~ | 9.27E-03 | 2.43E-04 | ~ | 1.14E-02 | 7.19E-04 | ~ | 9.20E-03 | 7.58E-05 |
1 | ZHOU A, QU B Y, LI H, et al. Multiobjective evolutionary algorithms: a survey of the state of the art[J]. Swarm and Evolutionary Computation, 2011, 1(1):32-49. 10.1016/j.swevo.2011.03.001 |
2 | 刘若辰,李建霞,刘静,等. 动态多目标优化研究综述[J]. 计算机学报, 2020, 43(7):1246-1278. 10.11897/SP.J.1016.2020.01246 |
LIU R C, LI J X, LIU J, et al. A survey on dynamic multi-objective optimization[J]. Chinese Journal of Computers, 2020, 43(7):1246-1278. 10.11897/SP.J.1016.2020.01246 | |
3 | RUAN G, YU G, ZHENG J, et al. The effect of diversity maintenance on prediction in dynamic multi-objective optimization[J]. Applied Soft Computing, 2017, 58: 631-647. 10.1016/j.asoc.2017.05.008 |
4 | MURUGANANTHAM A, TAN K C, VADAKKEPAT P. Evolutionary dynamic multiobjective optimization via Kalman filter prediction[J]. IEEE Transactions on Cybernetics, 2016, 46(12): 2862-2873. 10.1109/tcyb.2015.2490738 |
5 | DEB K, RAO N U B, KARTHIK S. Dynamic multi-objective optimization and decision-making using modified NSGA-Ⅱ: a case study on hydro-thermal power scheduling[C]// Proceedings of the 2007 International Conference on Evolutionary Multi-Criterion Optimization, LNCS 4403. Berlin: Springer, 2007: 803-817. |
6 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. 10.1109/4235.996017 |
7 | AZEVEDO C R B, ARAÚJO A F R. Generalized immigration schemes for dynamic evolutionary multiobjective optimization[C]// Proceedings of the 2011 IEEE Congress of Evolutionary Computation. Piscataway: IEEE, 2011: 2033-2040. 10.1109/cec.2011.5949865 |
8 | SAHMOUD S, TOPCUOGLU H R. A memory-based NSGA-Ⅱ algorithm for dynamic multi-objective optimization problems[C]// Proceedings of the 2016 European Conference on the Applications of Evolutionary Computation, LNCS 9598. Cham: Springer, 2016: 296-310. |
9 | JIANG M, WANG Z, QIU L, et al. A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning[J]. IEEE Transactions on Cybernetics, 2021, 51(7): 3417-3428. 10.1109/tcyb.2020.2989465 |
10 | CAO L, XU L, GOODMAN E D, et al. Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(2): 305-319. 10.1109/tevc.2019.2925722 |
11 | RONG M, GONG D, PEDRYCZ W, et al. A multimodel prediction method for dynamic multiobjective evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(2): 290-304. 10.1109/tevc.2019.2925358 |
12 | WANG C, YEN G G, JIANG M. A grey prediction-based evolutionary algorithm for dynamic multiobjective optimization[J]. Swarm and Evolutionary Computation, 2020, 56: No.100695. 10.1016/j.swevo.2020.100695 |
13 | ZHAO Q, YAN B, SHI Y, et al. Evolutionary dynamic multiobjective optimization via learning from historical search process[J]. IEEE Transactions on Cybernetics, 2022, 52(7): 6119-6130. 10.1109/tcyb.2021.3059252 |
14 | GONG D, XU B, ZHANG Y, et al. A similarity-based cooperative co-evolutionary algorithm for dynamic interval multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(1): 142-156. 10.1109/tevc.2019.2912204 |
15 | FENG L, ZHOU W, LIU W, et al. Solving dynamic multiobjective problem via autoencoding evolutionary search[J]. IEEE Transactions on Cybernetics, 2022, 52(5): 2649-2662. 10.1109/tcyb.2020.3017017 |
16 | ZHANG Q, YANG S, JIANG S, et al. Novel prediction strategies for dynamic multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(2): 260-274. 10.1109/tevc.2019.2922834 |
17 | SAHMOUD S, TOPCUOGLU H R. Sensor-based change detection schemes for dynamic multi-objective optimization problems[C]// Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence. Piscataway: IEEE, 2016: 1-8. 10.1109/ssci.2016.7849963 |
18 | RICHTER H. Detecting change in dynamic fitness landscapes[C]// Proceedings of the 2009 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2009: 1613-1620. 10.1109/cec.2009.4983135 |
19 | JIANG S, YANG S. A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(1):65-82. 10.1109/tevc.2016.2574621 |
20 | XU B, ZHANG Y, GONG D, et al. Environment sensitivity-based cooperative co-evolutionary algorithms for dynamic multi-objective optimization[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15(6): 1877-1890. 10.1109/tcbb.2017.2652453 |
21 | GOH C K, TAN K C. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(1):103-127. 10.1109/tevc.2008.920671 |
22 | DEB K, THIELE L, LAUMANNS M, et al. Scalable test problems for evolutionary multiobjective optimization[M]// ABRAHAM A, JAIN L, GOLDBERG R. Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, AI&KP. London: Springer, 2005: 105-145. 10.1007/1-84628-137-7 |
23 | ZHOU A, JIN Y, ZHANG Q. A population prediction strategy for evolutionary dynamic multiobjective optimization[J]. IEEE Transactions on Cybernetics, 2014, 44(1): 40-53. 10.1109/tcyb.2013.2245892 |
24 | FARINA M, DEB K, AMATO P. Dynamic multiobjective optimization problems: test cases, approximations, and applications[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(5):425-442. 10.1109/tevc.2004.831456 |
25 | DENG H, YEH C H, WILLIS R J. Inter-company comparison using modified TOPSIS with objective weights[J]. Computers and Operations Research, 2000, 27(10):963-973. 10.1016/s0305-0548(99)00069-6 |
26 | 何春雄,龙卫江,朱锋峰. 概率论与数理统计[M]. 北京:高等教育出版社, 2012:79-80. |
HE C X, LONG W J, ZHU F F. Probability Theory and Mathematical Statistics[M]. Beijing: Higher Education Press, 2012:79-80. | |
27 | CAO L, XU L, GOODMAN E D, et al. Decomposition-based evolutionary dynamic multiobjective optimization using a difference model[J]. Applied Soft Computing, 2019, 76: 473-490. 10.1016/j.asoc.2018.12.031 |
28 | 周永道,王会琦,吕王勇. 时间序列分析及应用[M]. 北京:高等教育出版社, 2015:69-87. |
ZHOU Y D, WANG H Q, LYU W Y. Time Series Analysis and Application[M]. Beijing: Higher Education Press, 2015:69-87. | |
29 | WANG C, YEN G G, ZOU F. A novel predictive method based on key points for dynamic multi-objective optimization[J]. Expert Systems with Applications, 2022, 190: No.116127. 10.1016/j.eswa.2021.116127 |
[1] | 田茂江, 陈鸣科, 堵威, 杜文莉. 面向大规模重叠问题的两阶段差分分组方法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1348-1354. |
[2] | 张莞婷, 杜文莉, 堵威. 基于多时间尺度协同的大规模原油调度进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1355-1363. |
[3] | 赵佳伟, 陈雪峰, 冯亮, 候亚庆, 朱泽轩, Yew‑Soon Ong. 优化场景视角下的进化多任务优化综述[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1325-1337. |
[4] | 刘晓芳, 张军. 概率驱动的动态多目标多智能体协同调度进化优化[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1372-1377. |
[5] | 魏凤凤, 陈伟能. 分布式数据驱动的多约束进化优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1393-1400. |
[6] | 田野, 陈津津, 张兴义. 面向约束多目标优化的进化计算与梯度下降联合优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1386-1392. |
[7] | 赵楷文, 王鹏, 童向荣. 基于双阶段搜索的约束进化多任务优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1415-1422. |
[8] | 夏吾吉, 黄鹤鸣, 更藏措毛, 范玉涛. 基于无监督学习和监督学习的抽取式文本摘要综述[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1035-1048. |
[9] | 牛科迪, 李敏, 姚中原, 斯雪明. 面向物联网的区块链共识算法综述[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3678-3687. |
[10] | 黄亚伟, 钱雪忠, 宋威. 基于双档案种群大小自适应方法的改进差分进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3844-3853. |
[11] | 黄杰, 武瑞梓, 李均利. 高效的自适应复杂网络鲁棒性优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3530-3539. |
[12] | 马勇健, 史旭华, 王佩瑶. 基于两阶段搜索与动态资源分配的约束多目标进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 269-277. |
[13] | 郭茂祖, 张雅喆, 赵玲玲. 基于空间语义和个体活动的电动汽车充电站选址方法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2819-2827. |
[14] | 徐赛娟, 裴镇宇, 林佳炜, 刘耿耿. 基于多阶段搜索的约束多目标进化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2345-2351. |
[15] | 李二超, 程艳丽. 基于权重向量聚类的动态多目标进化算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2226-2236. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||